Tìm các giá trị của n thoả mãn: (\(\sqrt{x}\)+1)2 > \(\sqrt{x}\)+n.
Giúp mình với đi mừ...
\(\text{P=}\left(\frac{\sqrt{x}-4}{\sqrt{x}\left(\sqrt{x}-2\right)}+\frac{3}{\sqrt{x}-2}\right)\)\(:\left(\frac{\sqrt{x}+2}{\sqrt{x}}-\frac{\sqrt{x}}{\sqrt{x}-2}\right)\)
a) Rút gọn biểu thức P
b) Tìm các giá trị của m để x thoả mãn: \(\left(1+\sqrt{x}\right).P>\sqrt{x}+m\)
(*Giải giúp mình câu b với, mình cảm ơn nhiều.
Ở câu a, mình tìm được ĐKXĐ là x>0 và \(x\ne4\), P=\(1-\sqrt{x}\))
Giúp mình với!
Cho biểu thức: C = \(\dfrac{3x+\sqrt{9x}-3}{x+\sqrt{x}-2}-\dfrac{\sqrt{x}+1}{\sqrt{x}+2}+\dfrac{\sqrt{x}-2}{\sqrt{x}}\times\left(\dfrac{1}{1-\sqrt{x}}-1\right)\)
a) Rút gọn C.
b) Tìm các giá trị của x để C = \(\sqrt{x}\)
c) Tìm giá trị của C, biết |2x - 5| = 3.
d) So sánh C và \(C^2\)
a: \(C=\dfrac{3x+3\sqrt{x}-3-x+1}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}-2}{\sqrt{x}}\cdot\dfrac{1-1+\sqrt{x}}{1-\sqrt{x}}\)
\(=\dfrac{2x+3\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)}+\dfrac{\sqrt{x}-2}{1-\sqrt{x}}\)
\(=\dfrac{2\sqrt{x}-1-\sqrt{x}+2}{\sqrt{x}-1}=\dfrac{\sqrt{x}+1}{\sqrt{x}-1}\)
b: Để \(C=\sqrt{x}\) thì \(x-\sqrt{x}=\sqrt{x}+1\)
=>\(x-2\sqrt{x}-1=0\)
=>\(\Leftrightarrow x=3+2\sqrt{2}\)
c: |2x-5|=3
=>2x-5=3 hoặc 2x-5=-3
=>2x=2 hoặc 2x=8
=>x=4(nhận) hoặc x=1(loại)
Khi x=4 thì \(C=\dfrac{2+1}{2-1}=3\)
\(R=\left(\frac{2\sqrt{x}}{\sqrt{x+3}}+\frac{\sqrt{x}}{\sqrt{x-3}}-\frac{3\left(\sqrt{x+3}\right)}{x-9}\right):\left(\frac{2\sqrt{x-2}}{\sqrt{x-3}}-1\right).\)
a)rút gọn R
b)tìm các giá trị của x để R < -1
c)tìm các giá trị của x để giá trị của biểu thức R nhỏ nhất. Tìm giá trị nhỏ nhất đó.
aI CỨU ĐI...MÌNH THÍNH GẦN RA RỒI NHƯNG KẾT QUẢ SAI, AI GIÚP MÌNH MÌNH SẼ TÍCH <3
ĐK \(\hept{\begin{cases}x\ge0\\x\ne9\end{cases}}\)
a, \(R=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)+\sqrt{x}\left(\sqrt{x}+3\right)-3\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}:\frac{2\sqrt{x}-2-\sqrt{x}+3}{\sqrt{x}-3}\)
\(=\frac{3x-6\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}=\frac{3\left(\sqrt{x}+1\right)\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}.\frac{\sqrt{x}-3}{\sqrt{x}+1}\)
\(=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}\)
b. \(R< -1\Rightarrow R+1< 0\Rightarrow\frac{3\sqrt{x}-9+\sqrt{x}+3}{\sqrt{x}+3}< 0\Rightarrow\frac{4\sqrt{x}-6}{\sqrt{x}+3}< 0\)
\(\Rightarrow0\le x< \frac{9}{4}\)
c. \(R=\frac{3\left(\sqrt{x}-3\right)}{\sqrt{x}+3}=3+\frac{-18}{\sqrt{x}+3}\)
Ta thấy \(\sqrt{x}+3\ge3\Rightarrow\frac{-18}{\sqrt{x}+3}\ge-6\Rightarrow3+\frac{-18}{\sqrt{x}+3}\ge-3\Rightarrow R\ge-3\)
Vậy \(MinR=-3\Leftrightarrow x=0\)
Tìm tất cả các giá trị của x,y,z thỏa mãn \(\sqrt{x-y+z}=\sqrt{x}-\sqrt{y}+\sqrt{z}\)
Làm ơn giúp mình với!!!
\(\sqrt{x-y+z}=\sqrt{x}-\sqrt{y}+\sqrt{z}\)
Điều kiện tự làm nhé
\(\Leftrightarrow x-y+z=x+y+z+2\left(\sqrt{xz}-\sqrt{xy}-\sqrt{yz}\right)\)
\(\Leftrightarrow y+\sqrt{xz}-\sqrt{xy}-\sqrt{yz}\)
\(\Leftrightarrow\left(\sqrt{z}-\sqrt{y}\right)\left(\sqrt{x}-\sqrt{y}\right)=0\)
\(\Leftrightarrow\orbr{\begin{cases}x=y\\z=y\end{cases}}\)
cho các số dương x, y, z thoả mãn x+y+z nhỏ hơn hoặc bằng 3 tìm giá trị lớn nhất của biểu thức:
\(A=\sqrt{1+X^2}+\sqrt{1+Y^2}+\sqrt{1+Z^2}+2\left(\sqrt{X}+\sqrt{Y}+\sqrt{Z}\right)\)
Huhu
tui
moi
hoc
lop
5
chua
bit
lam
lop
9
kho
qua
hihi
HONG BIET LAM
?
?
?
?
?
?
?
?
?
?
??
??
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
??
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
?
1.Với các số thực x,y thoả mãn \(x-\sqrt{x+6}=\sqrt{y+6}-y\)Y Tìm giá trị lớn nhất ,nhỏ nhất của biểu thức \(P=x+y\)
tìm tất cả các giá trị của m để bất phương trình \(\sqrt{3x^2+2x+1}>m\) thoả mãn với mọi x
Rút gọn biểu thức: A=\(\frac{\sqrt{5}+3}{\sqrt{2}+\sqrt{3+\sqrt{5}}}+\frac{3-\sqrt{5}}{\sqrt{2}-\sqrt{3-\sqrt{5}}}\)
Tìm giá trị lớn nhất của biểu thức M=\(2x+\sqrt{5-x^2}\)
Cho x;y là các số thực thỏa mãn \(x\sqrt{1-y^2}+y\sqrt{1-x^2}=1\).Tính N=\(x^2+y^2\)
Giúp mình nhanh với...mai sắp tạch rồi
Cho x ≥ –1, y ≥ 1 thoả mãn \(\sqrt{x+1}+\sqrt{y-1}=\sqrt{2\left(x-y\right)^2+10x-6y+8}\)
Tìm giá trị nhỏ nhất của biểu thức P = x4 + y2 – 5(x + y) + 2020.Cho x ≥ –1, y ≥ 1 thoả mãn .
Ta có: \(\sqrt{x+1}+\sqrt{y-1}\le\sqrt{2\left(x+y\right)}\)
\(\Leftrightarrow\sqrt{2\left(x-y\right)^2+10x-6y+8}\le\sqrt{2\left(x+y\right)}\)
\(\Leftrightarrow2\left(x-y\right)+10x-6y+8\le2\left(x+y\right)\)
\(\Leftrightarrow2\left(x-y\right)^2+8\left(x-y\right)+8\le0\)
\(\Leftrightarrow2\left(x-y+2\right)^2\le0\)
Dấu = xảy ra khi \(\hept{\begin{cases}x+1=y-1\\x-y+2=0\end{cases}\Leftrightarrow}y=x+2\)
Thế vào P ta được
\(P=x^4+\left(x+2\right)^2-5x-5\left(x+2\right)+2020\)
\(=x^4+2x^2-6x+2014\)
\(=\left(x^2-1\right)^2+3\left(x-1\right)^2+2010\ge2010\)
Vậy GTNN là P = 2010 đạt được khi x = 1, y = 3
Ta có: √x+1+√y−1≤√2(x+y)
⇔√2(x−y)2+10x−6y+8≤√2(x+y)
⇔2(x−y)+10x−6y+8≤2(x+y)
⇔2(x−y)2+8(x−y)+8≤0
⇔2(x−y+2)2≤0
Dấu = xảy ra khi {
x+1=y−1 |
x−y+2=0 |
⇔y=x+2
Thế vào P ta được
P=x4+(x+2)2−5x−5(x+2)+2020
=x4+2x2−6x+2014
=(x2−1)2+3(x−1)2+2010≥2010
Vậy GTNN là P = 2010 đạt được khi x = 1, y = 3
Thế vào P ta được
\(P=x^4+x^2-6x+2014\) mới đúng