Cho 2 hpt: 3x+y=1 và x-my=4
a) hệ có 1 nghiệm (x;y)=(1;2)
b)hệ có 1 nghiệm (x;y)=(2;3)
c) hệ vô nghiệm
d) hệ có nghiệm duy nhất
1. Cho hệ phương trình (a+1)x - y = a+1 và x+(a-1)y=2
a) Giải và biện luận hpt
b) Tìm a nguyên để hpt có nghiệm nguyên
c) Tìm a để nghiệm (x,y) của hpt thoả mãn x+y nhỏ nhất
2. Cho hpt : 3x+my=5 và mx-y=2
a) Giải hpt
b) Tìm m để hệ có nghiệm duy nhất (x,y) thoả mãn x+y <0
MÌNH ĐANG CẦN GẤP. CẢM ƠN CÁC BẠN RẤT NHIỀU !
1. Cho hệ phương trình (a+1)x - y = a+1 và x+(a-1)y=2
a) Giải và biện luận hpt
b) Tìm a nguyên để hpt có nghiệm nguyên
c) Tìm a để nghiệm (x,y) của hpt thoả mãn x+y nhỏ nhất
2. Cho hpt : 3x+my=5 và mx-y=2
a) Giải hpt
b) Tìm m để hệ có nghiệm duy nhất (x,y) thoả mãn x+y <0
MÌNH ĐANG CẦN GẤP. CẢM ƠN CÁC BẠN RẤT NHIỀU !
1. Cho hệ phương trình (a+1)x - y = a+1 và x+(a-1)y=2
a) Giải và biện luận hpt
b) Tìm a nguyên để hpt có nghiệm nguyên
c) Tìm a để nghiệm (x,y) của hpt thoả mãn x+y nhỏ nhất
2. Cho hpt : 3x+my=5 và mx-y=2
a) Giải hpt
b) Tìm m để hệ có nghiệm duy nhất (x,y) thoả mãn x+y <0
MÌNH ĐANG CẦN GẤP. CẢM ƠN CÁC BẠN RẤT NHIỀU !
Cho 2 hpt: 3x+y=1 và x-my=4
a) hệ có 1 nghiệm (x;y)=(1;2)
b)hệ có 1 nghiệm (x;y)=(2;3)
c) hệ vô nghiệm
d) hệ có nghiệm duy nhất
Cho hpt {ax-3y=4 {3x+2y=1 a)giải hpt với a=1. b)tìm a để hệ vô nghiệm C)tìm a để hệ có nghiệm (x;t) thoả x=-y
a: Khi a=1 thì hệ sẽ là:
x-3y=4 và 3x+2y=1
=>x=1; y=-1
b: Để hệ vô nghiệm thì a/3=-3/2<>4/1
=>a=-9/2
Cho hệ phương trình (IV) :
3x-y=2m-1 và x+2y=3m+2
a, Gỉai hpt ( IV) khi m=1
b, Tìm m đề hpt (IV) có nghiệm duy nhất (x;y) sao cho :x^2+y^2=5
c, Tìm m để hpt có nghiệm duy nhất x;y sao cho x-3y>0
Cho hệ phương trình (IV) :
3x-y=2m-1 và x+2y=3m+2
a, Gỉai hpt ( IV) khi m=1
b, Tìm m đề hpt (IV) có nghiệm duy nhất (x;y) sao cho :x^2+y^2=5
c, Tìm m để hpt có nghiệm duy nhất x;y sao cho x-3y>0
a) Thay \(m=1\) vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}3x-y=1\\x+2y=5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=2\end{matrix}\right.\)
Vậy ...
b) HPT \(\Leftrightarrow\left\{{}\begin{matrix}6x-2y=4m-2\\x+2y=3m+2\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}7x=7m\\y=2m-1-3x\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x=m\\y=-m-1\end{matrix}\right.\)
Ta có: \(x^2+y^2=5\)
\(\Rightarrow m^2+m^2+2m+1=5\) \(\Leftrightarrow m^2+m-2=0\) \(\Rightarrow\left[{}\begin{matrix}m=1\\m=-2\end{matrix}\right.\)
Vậy ...
c) Hệ phương trình luôn có nghiệm duy nhất
Ta có: \(x-3y>0\)
\(\Rightarrow m-3\left(-m-1\right)>0\)
\(\Leftrightarrow4m+3>0\) \(\Leftrightarrow m>-\dfrac{3}{4}\)
Vậy ...
Cho hệ phương trình (IV) :
3x-y=2m-1 và x+2y=3m+2
a, Gỉai hpt ( IV) khi m=1
b, Tìm m đề hpt (IV) có nghiệm duy nhất (x;y) sao cho :x^2+y^2=5
c, Tìm m để hpt có nghiệm duy nhất x;y sao cho x-3y>0
a) Thay m=1 vào hệ pt, ta được:
\(\left\{{}\begin{matrix}3x-y=1\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3x-y=1\\3x+6y=15\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}-7y=-14\\x+2y=5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=2\\x=5-2y=5-2\cdot2=1\end{matrix}\right.\)
Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là (x,y)=(1;2)
1, cho hpt (m+1)x + y=4 và mx+y=2m
m là tham số .tìm m để hpt có nghiệm (x;y) thỏa mãn x+y =2
2, cho hpt 3x + (m-1)y=12 và (m-1)x +12y=24
a, tìm m để hpt có nghiệm duy nhất thỏa mãn x+y = -1
b, tìm m nguyên để hpt có nghiệm duy nhất là nghiệm nguyên