bt\(\frac{a}{b}\)=\(\frac{b}{c}\)=\(\frac{c}{a}\)vs a,b,c\(\ne\)0.tính gúa trị biểu thức:\(\frac{a^{72}.b^{73}.c^{74}}{b^{219}}\)
Biết \(\frac{a}{b}\)=\(\frac{b}{c}\)=\(\frac{c}{a}\)biết a,b,c khác 0 tính gt của biểu thức:\(\frac{a^{72}.b^{73}.c^{74}}{b^{219}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có :
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}=\frac{a+b+c}{b+c+a}=1\)
\(\frac{a}{b}=1\Rightarrow a=b;\frac{b}{c}=1\Rightarrow b=c\)
Từ đó suy ra : a = b = c
\(\Rightarrow\frac{a^{72}.b^{73}.c^{74}}{b^{219}}=\frac{b^{219}}{b^{219}}=1\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có :
a/b=b/c=c/a=a+b+c/a+b+c = 1
=> a=b;b=c;c=a => a=b=c
Khi đó : a^72.b^73.c^74/b^219 = b^72.b^73.b^74/b^219 = b^219/b^219 = 1
k mk nha
Cho\(\frac{a}{b}\)=\(\frac{b}{c}\)=\(\frac{c}{a}\)(a, b, c ≠ 0)
Tính giá trị của \(\frac{a^{72}.b^{73}.c}{b^{219}}\)
Cho a, b, c thỏa mãn: \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\) và a+b+c\(\ne\)0. Tính giá trị biểu thức P=\(\frac{a+b}{c}=\frac{b+c}{a}=\frac{c+a}{b}\)
Ta có \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
=> b + c = 2a ; c + a = 2b ; a + b = 2c
Khi đó P = \(\frac{a+b}{c}+\frac{b+c}{a}+\frac{c+a}{b}=\frac{2c}{c}+\frac{2a}{a}+\frac{2b}{b}=2+2+2=6\)
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{d}{a}\) trong đó a+b+c+d\(\ne\)0
Tính giá trị của biểu thức \(\frac{2a-b}{c+d}+\frac{2b-c}{d+a}+\frac{2c-d}{a+b}+\frac{2d-a}{c+b}\)
cho a ; b ; c \(\ne\)0 và \(\frac{a+b-c}{c}=\frac{b+c-a}{a}=\frac{c+a-b}{b}\)
Tính giá trị biểu thức \(P=\left(1+\frac{b}{a}\right)\left(1+\frac{c}{b}\right)\left(1+\frac{a}{c}\right)\)
Cho 3 số a,b,c khác nhau và khác 0(b+c,a+c,a+b \(\ne\)0).Thỏa mãn điều kiện \(\frac{a}{b+c}=\frac{b}{a+c}=\frac{c}{a+b}\).Tính giá trị biểu thức P=\(\frac{b+c}{a}=\frac{a+c}{b}=\frac{a+b}{c}\)
Biết a/b=b/c -c/a (a, b, c khác 0 )
Tìm giá trị biểu thức :
P=a^72 *b^73 *c^74 / a^219
Please help me. Thank you so much ( làm ơn giúp tôi , cảm ơn rất nhiều )
a) cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}.\)chứng minh rằng : \(\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{b}\)
b) Tìm giá trị của biểu thức A, biết A = \(\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}\)(a, b, c \(\ne\)0)
a) Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=\frac{a+b+c}{b+c+d}\)
\(\Rightarrow\left(\frac{a}{b}\right)^3=\left(\frac{a+b+c}{b+c+d}\right)^3\)
mà \(\left(\frac{a}{b}\right)^3=\frac{a}{b}.\frac{a}{b}.\frac{a}{b}=\frac{a}{b}.\frac{b}{c}.\frac{c}{d}=\frac{a}{d}\)
\(\Rightarrow\left(\frac{a+b+c}{b+c+d}\right)^3=\frac{a}{d}\)( đpcm )
b) Nếu \(a+b+c=0\)\(\Rightarrow b+c=-a\)
\(\Rightarrow A=\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a}{-a}=-1\)
Nếu \(a+b+c\ne0\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có:
\(A=\frac{a}{b+c}=\frac{b}{c+a}=\frac{c}{a+b}=\frac{a+b+c}{b+c+c+a+a+b}=\frac{a+b+c}{2\left(a+b+c\right)}=\frac{1}{2}\)
a) Đặt \(\frac{a}{b}=\frac{b}{c}=\frac{c}{d}=k\Rightarrow\hept{\begin{cases}a=kb\\b=kc\\c=kd\end{cases}}\)
Ta có : \(\left(\frac{a+b+c}{b+c+d}\right)^3=\left(\frac{kb+kc+kd}{b+c+d}\right)^3=\left(\frac{k\left(b+c+d\right)}{b+c+d}\right)^3\)
ấy chết xin lỗi bạn nhé :( đang làm dở lại bấm gửi bài
Cho \(\frac{a}{b}=\frac{b}{c}=\frac{c}{a}\) và a+b+c\(\ne\)0. Tính giá trị của biểu thức: P= \(\frac{a^{2000}.b^{19}}{c^{2019}}\)