Tìm tất cả các số nguyên dương n để \(\sqrt{\frac{4n+1}{n+7}}\) là số hữu tỉ.
tìm tất cả các số nguyên dương n để 2n + 3n + 4n là 1 số chính phương
Lời giải:
Đặt tổng trên là $A$.
Với $n=1$ thì $2^n+3^n+4^n=9$ là scp (thỏa mãn)
Xét $n\geq 2$. Khi đó:
$2^n\equiv 0\pmod 4; 4^n\equiv 0\pmod 4$
$\Rightarrow A=2^n+3^n+4^n\equiv 3^n\equiv (-1)^n\pmod 4$
Vì 1 scp khi chia 4 chỉ có thể có dư là $0$ hoặc $1$ nên $n$ phải là số chẵn.
Đặt $n=2k$ với $k$ nguyên dương.
Khi đó: $A=2^{2k}+3^{2k}+4^{2k}\equiv (-1)^{2k}+0+1^{2k}\equiv 2\pmod 3$
Một scp khi chia 3 chỉ có thể có dư là 0 hoặc 1 nên việc chia 3 dư 2 như trên là vô lý
Vậy TH $n\geq 2$ không thỏa mãn. Tức là chỉ có 1 giá trị $n=1$ thỏa mãn.
1, tìm tất cả số nguyên để phân số tối giản:
\(\frac{18n+3}{21n+7}\)và \(\frac{2n+7}{5n+2}\)
2, tìm số nguyên n để các phân số sau là số nguyên:
A=\(\frac{n^2+4n-2}{n+3}\)
B=\(\frac{4n-3}{3n-1}\)
C=\(\frac{n^2+3n-3}{x-5}\)
Tìm tất cả các số nguyên dương x,y,z thỏa mãn : \(\frac{x+y\sqrt{2019}}{y+z\sqrt{2019}}\)là số hữu tỉ đồng thời \(x^2+y^2+z^2\)là số nguyên tố
Tìm n nguyên để các số hữu tỉ sau là những số nguyên:
a) \(\frac{3}{n-1}\)
b)\(\frac{-4}{2n-1}\)
c)\(\frac{3n+7}{n-1}\)
d)\(\frac{4n-1}{3-2n}\)
a, Để 3/(n-1) nguyên
<=> 3 chia hết cho n-1
Mà n-1 nguyên
=> n-1 thuộc Ư(3)={-3,-1,1,3}
=> n=-2,0,2,4
Tìm tất cả các số nguyên dương n sao cho 2n + 3n+ 4n là 1 số chính phương
Tìm tất cả các bộ số nguyên dương (x;y;z) sao cho \(\frac{x+y\sqrt{2015}}{y+x\sqrt{2015}}\) là số hữu tỉ và \(x^2+y^2+z^2\) là số nguyên tố
Xửa đề:
\(\frac{x-y\sqrt{2015}}{y-z\sqrt{2015}}=\frac{m}{n}\) (vơi m, n thuộc Z)
\(\Leftrightarrow xn-ym=\left(yn-zm\right)\sqrt{2015}\)
\(\Leftrightarrow\hept{\begin{cases}xn-ym=0\\yn-zm=0\end{cases}}\)
\(\Rightarrow\frac{x}{y}=\frac{m}{n}=\frac{y}{z}\)
\(\Rightarrow xz=y^2\)
\(\Rightarrow x^2+y^2+z^2=x^2+2xz+z^2-y^2=\left(x+z+y\right)\left(x+z-y\right)\)
\(\Rightarrow\orbr{\begin{cases}x+y+z=1\left(l\right)\\x+z-y=1\end{cases}}\)
\(\Rightarrow x+z=y+1\)
\(\Leftrightarrow x^2+2xz+z^2=y^2+2y+1\)
\(\Leftrightarrow x^2+\left(y-1\right)^2+z^2=2\)
\(\Rightarrow x=y=z=1\)
tìm tất cả các bộ số nguyên dương (x,y,z) thoản mãn \(\frac{x+y\sqrt{2013}}{y+z\sqrt{2013}}\)là số hữu tỉ đồng thời \(x^2+y^2+z^2\)là số nguyên tố
a, tính Max A=\(\sqrt{x-1}+\sqrt{9-x}\)
b,Tìm tất cả các số hữu tỉ x để A=\(\dfrac{3\sqrt{x}+11}{\sqrt{x}+2}\)là số nguyên
Lời giải:
a.
Áp dụng BĐT Bunhiacopxky:
$A^2=(\sqrt{x-1}+\sqrt{9-x})^2\leq (x-1+9-x)(1+1)=16$
$\Rightarrow A\leq 4$
Vậy $A_{\max}=4$. Giá trị này đạt tại $x=5$
b.
$A=\frac{3(\sqrt{x}+2)+5}{\sqrt{x}+2}=3+\frac{5}{\sqrt{x}+2}$
Để $A$ nguyên thì $\frac{5}{\sqrt{x}+2}=m$ với $m$ nguyên dương
$\Leftrightarrow \sqrt{x}+2=\frac{5}{m}$
$\sqrt{x}=\frac{5-2m}{m}$
Vì $\sqrt{x}\geq 0$ nên $\frac{5-2m}{m}\geq 0$
Mà $m$ nguyên dương nên $5-2m\geq 0$
$\Leftrightarrow m\leq 2,5$.
$\Rightarrow m=1; 2$
$\Rightarrow x=9; x=\frac{1}{4}$