Cho biểu thức : \(A=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{3x+9}{x-9}\)với \(x\ge0;x\ne9\). Tìm giá trị lớn nhất của biểu thức A.
Cho biểu thức: B = \(\left(\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}+\frac{3x-9}{x-9}\right):\left(\frac{\sqrt{x}-2}{3}+1\right)\)với \(x\ge0;x\ne9\)
Rút gọn B
Cho biểu thức \(A=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{3x+9}{x-9}\), với \(x\ge0\), \(x\ne9\)
a) Rút gọn biểu thức A. Tìm x để A = \(\frac{1}{3}\)
b) Tìm GTLN của biểu thức A
Cho biểu thức
A = \(\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x}\left(x\ge0\right),x\ne9\)
a) Rứt gọn biểu thức
a) \(A=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{3-11\sqrt{x}}{9-x}=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}+1}{\sqrt{x}-3}+\frac{11\sqrt{x}-3}{x-9}=\frac{2\sqrt{x}\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{\left(\sqrt{x}+1\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{11\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{2x-6\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{x+4\sqrt{x}+3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}+\frac{11\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{2x-6\sqrt{x}+x+4\sqrt{x}+3+11\sqrt{x}-3}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3x+9\sqrt{x}}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\sqrt{x}\left(\sqrt{x}+3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\sqrt{x}}{\sqrt{x}-3}\)
Cho biểu thức \(A=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x-3}}-\frac{3x+9}{x-9}\) (đkxđ: \(x\ge0;x\ne9\)
Rút gọn và tìm giá trị lớn nhất của A
\(ĐKXĐ:x\ne9,x\ge0\)
Ta có : \(A=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{3x+9}{x-9}\)
\(=\frac{\sqrt{x}\left(\sqrt{x}-3\right)+2\sqrt{x}\left(\sqrt{x}+3\right)-3x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}-3\right)\left(\sqrt{x}+3\right)}\)
\(=\frac{3}{\sqrt{x}+3}\)
Ta thấy : \(\sqrt{x}\ge0\Rightarrow\sqrt{x}+3\ge3>0\)
\(\Rightarrow\frac{3}{\sqrt{x}+3}\le\frac{3}{3}=1\)
Hay : \(A\le1\)
Dấu "=" xảy ra \(\Leftrightarrow x=0\)
Vậy GTLN của \(A=1\) khi \(x=0\)
Cho hai biểu thức \(A=\frac{\sqrt{x}+1}{\sqrt{x}-3};B=\frac{2\sqrt{x}}{\sqrt{x}+3}+\frac{\sqrt{x}}{\sqrt{x}-3}-\frac{3x+3}{x-9}\)(ĐK: \(x\ge0;x\ne9\))
Tìm tất cả giá trị của x để \(\frac{B}{A}< \frac{-1}{2}\)
Với x >= 0 ; x khác 9
\(B=\frac{2x-6\sqrt{x}+x+3\sqrt{x}-3x-3}{x-9}=\frac{-3\sqrt{x}-3}{x-9}=\frac{-3\left(\sqrt{x}+1\right)}{x-9}\)
\(\frac{B}{A}=\frac{-3\left(\sqrt{x}+1\right)}{x-9}:\frac{\sqrt{x}+1}{\sqrt{x}-3}=\frac{-3}{\sqrt{x}+3}+\frac{1}{2}< 0\)
\(\Leftrightarrow\frac{-6+\sqrt{x}+3}{2\left(\sqrt{x}+3\right)}< 0\Rightarrow\sqrt{x}-3< 0\Leftrightarrow x< 9\)
Kết hợp đk vậy 0 =< x < 9
Cho biểu thức \(A=\frac{\sqrt{x}}{\sqrt{x}+3}+\frac{2\sqrt{x}}{\sqrt{x}-3}-\frac{3x+9}{x-9}\)
với \(x\ge0,x\ne9\)
a, rút gọn A
b, tìm x để \(A=\frac{1}{3}\)
c,tìm GTLN của A
a) \(A=\frac{\sqrt{x}\left(\sqrt{x}-3\right)+2\sqrt{x}\left(\sqrt{x}+3\right)-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(A=\frac{x-3\sqrt{x}+2x+6\sqrt{x}-3x-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}\)
\(A=\frac{3\sqrt{x}-9}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3\left(\sqrt{x}-3\right)}{\left(\sqrt{x}+3\right)\left(\sqrt{x}-3\right)}=\frac{3}{\sqrt{x}+3}\)
b) \(A=\frac{1}{3}=>\frac{3}{\sqrt{x}+3}=\frac{1}{3}\)
\(=>\sqrt{x}+3=9\)
\(=>\sqrt{x}=6=>x=36\)
c) \(A\)\(lớn\)\(nhất\)\(< =>\frac{3}{\sqrt{x}+3}lớn\)\(nhất\)
\(=>\sqrt{x}+3\)\(nhỏ\)\(nhất\)
\(Mà\)\(\sqrt{x}+3>=3
\)
\(Do\)\(đó\)\(\sqrt{x}+3=3=>x=0\)
Rút gọn các biểu thức sau:
C=\(\left(\frac{\sqrt{x}+1}{x-4}-\frac{\sqrt{x}-1}{x+4\sqrt{x}+4}\right).\frac{x\sqrt{x}+2x-4\sqrt{x}-8}{\sqrt{x}-3}\)(với \(x\ge0\),\(x\ne4,x\ne9\))
D=\(\left(\frac{\sqrt{x}+2}{x-9}-\frac{\sqrt{x}-2}{x+6\sqrt{x}+9}\right).\frac{x\sqrt{x}-3x-9\sqrt{x}-27}{\sqrt{x}-2}\)(với \(x\ge0,x\ne4,x\ne9\))
Cho hai biểu thức \(A=\frac{x-9}{\sqrt{x}-3}\) và \(B=\frac{3}{\sqrt{x}-3}+\frac{2}{\sqrt{x+3}}+\frac{x-5\sqrt{x}-3}{x-9}\)với \(x\ge0,x\ne9\)
c) Với x > 9, tìm giá trị nhỏ nhất của biểu thức P= A.B
Rút gọn biểu thức:
a) \(A=\left(\frac{3x-3\sqrt{x}-3}{x+\sqrt{x}-2}+\frac{1}{\sqrt{x}-1}-\frac{1}{\sqrt{x}+2}\right):\frac{1}{\sqrt{x}+2}\left(x\ge0,x\ne1\right)\)
b) \(B=\frac{x\sqrt{x}-3}{x-2\sqrt{x}-3}-\frac{2\left(\sqrt{x-3}\right)}{\sqrt{x}+1}+\frac{\sqrt{x}+3}{3-\sqrt{x}}\left(x>0,x\ne9\right)\)
c) \(C=\frac{2\sqrt{x}-9}{x-5+6}-\frac{\sqrt{x}+3}{\sqrt{x}-2}-\frac{2\sqrt{x}+1}{3-\sqrt{x}}\left(x\ge0,x\ne4,x\ne9\right)\)