Cho tam giác ABC. Trên cạnh AC lấy hai điểm D và E sao cho DE=AD=EC. Trung tuyến AM cắt BD tại P và trung tuyến CN cắt BE tại Q. Chứng minh Q là trung điểm của trung tuyến CN. Chứng minh PQ song song AC; Suy ra PQ=1/2MN và PQ=3/4DE.Cho tam giác ABC. Trên cạnh AC lấy hai điểm D và E sao cho DE=AD=EC. Trung tuyến AM cắt BD tại P và trung tuyến CN cắt BE tại Q. Chứng minh Q là trung điểm của trung tuyến CN. Chứng minh PQ song song AC; Suy ra PQ=1/2MN và PQ=3/4DE.
chào mọi người nha mình là Thành rất vui khi gặp các bạn
Cho tam giác ABC. Trên cạnh AC lấy hai điểm D và E sao cho DE=AD=EC. Trung tuyến AM cắt BD tại P và trung tuyến CN cắt BE tại Q. Chứng minh Q là trung điểm của trung tuyến CN. Chứng minh PQ song song AC; Suy ra PQ=1/2MN và PQ=3/4DE.
Cho tam giác ABC. Trên cạnh AC lấy hai điểm D và E sao cho DE=AD=EC. Trung tuyến AM cắt BD tại P và trung tuyến CN cắt BE tại Q. Chứng minh Q là trung điểm của trung tuyến CN. Chứng minh PQ song song AC; Suy ra PQ=1/2MN và PQ=3/4DE
Cho tam giác ABC. Trên cạnh AC lấy hai điểm D và E sao cho DE=AD=EC. Trung tuyến AM cắt BD tại P và trung tuyến CN cắt BE tại Q.
a) Chứng minh Q là trung điểm của trung tuyến CN.
b) Chứng minh PQ song song AC.
c) Suy ra PQ=1/2MN và PQ=3/4DE.
Cho tam giác ABC. Trên cạnh AC lấy hai điểm D và E sao cho DE=AD=EC. Trung tuyến AM cắt BD tại P và trung tuyến CN cắt BE tại Q.
a) Chứng minh Q là trung điểm của trung tuyến CN.
b) Chứng minh PQ song song AC.
c) Suy ra PQ=1/2MN và PQ=3/4DE.
Cho tam giác nhọn ABC có AM là đường trung tuyến. Trên cạnh AC lấy hai điểm D và E sao cho
AD = DE = EC. AM cắt BD tại I.
a) Chứng minh tứ giác BDEM là hình thang.
b) Chứng minh I là trung điểm của AM.
c) Chứng minh BI = 3DI.
d) Trên tia đối của CB lấy hai điểm P và Q sao cho CP = PQ = CM. Chứng minh ME, AP, DQ đồng quy
tại một điểm.
a: Xét ΔBDC có
E là trung điểm của DC
M là trung điểm của BC
Do đó: EM là đường trung bình của ΔBDC
Suy ra: EM//BD
hay MEDB là hình thang
b: Xét ΔAME có
D là trung điểm của AE
DI//ME
Do đó: I là trung điểm của AM
a: Xét ΔBDC có
E là trung điểm của DC
M là trung điểm của BC
Do đó: EM là đường trung bình của ΔBDC
Suy ra: EM//BD
hay MEDB là hình thang
b: Xét ΔAME có
D là trung điểm của AE
DI//ME
Do đó: I là trung điểm của AM
Cho tam giác nhọn ABC có AM là đường trung tuyến. Trên cạnh AC lấy hai điểm D và E sao cho
AD = DE = EC. AM cắt BD tại I.
a) Chứng minh tứ giác BDEM là hình thang.
b) Chứng minh I là trung điểm của AM.
c) Chứng minh BI = 3DI.
d) Trên tia đối của CB lấy hai điểm P và Q sao cho CP = PQ = CM. Chứng minh ME, AP, DQ đồng quy
tại một điểm.
a: Xét ΔBDC có
E là trung điểm của DC
M là trung điểm của BC
Do đó: EM là đường trung bình của ΔBDC
Suy ra: EM//BD
Xét tứ giác BMED có EM//BD
nên BMED là hình thang
b: Xét ΔAME có
D là trung điểm của AE
DI//ME
Do đó: I là trung điểm của AM
a: Xét ΔBDC có
E là trung điểm của DC
M là trung điểm của BC
Do đó: EM là đường trung bình của ΔBDC
Suy ra: EM//BD
Xét tứ giác BMED có EM//BD
nên BMED là hình thang
b: Xét ΔAME có
D là trung điểm của AE
DI//ME
Do đó: I là trung điểm của AM
1)Cho tam giác ABC, có 2 đường trung tuyến BM và CN cắt nhau tại G. Chứng minh: BM+ CN > 3232BC
2)Cho tam giác ABC, D là trung điểm AC. Trên BD lấy E sao cho BE=2ED. F thuộc tia đối của tia DE sao cho BF=2BE. K là trung điểm CF,G là giao điểm EK và AC. Chứng minh
a) G là trọng tâm tam giác EFC
b) Tính GEGKGEGK,GCDC
1:
Xét ΔBAC có
BM,CN là trung tuyến
BM cắt CN tại G
=>G là trọng tâm
=>BG=2/3BM và CG=2/3CN
BG+CG>BC
=>2/3BM+2/3CN>BC
=>2/3(BM+CN)>BC
=>BM+CN>3/2BC
2:
BF=2BE
=>EF=BE
=>EF=2ED
=>D là trung điểm của EF
Xét ΔFEC có
CD,EK là trung tuyến
CD cắt EK tại G
=>G là trọng tâm
b: G là trọng tâm của ΔFEC
=>GE/GK=1/2 và GC/DC=2
cho tam giác ABC vuông tại A (AB<AC).Trên cạnh AC lấy điểm D sao cho AD=AB;Gọi M là trung điểm của BD,Tia AM cắt BC tại K.
a,Chứng Minh: tam giác AMB = tam giác AMD
b,Chứng Minh:BK=DK
c,Trên tia đối của tia BA lấy điểm E sao cho BE=CD.Chứng minh 3 điểm D,K,E thẳng hàng
c) Δ ABK = Δ ADK (câu b) => BK = DK (2 cạnh tương ứng)
và ABK = ADK (2 góc tương ứng)
Mà ABK + KBE = 180o (kề bù)
ADK + KDC = 180o (kề bù)
nên KBE = KDC
Xét Δ KBE và Δ KDC có:
BE = CD (gt)
KBE = KDC (cmt)
BK = DK (cmt)
Do đó, Δ KBE = Δ KDC (c.g.c)
=> BKE = DKC (2 góc tương ứng)
Lại có: BKD + DKC = 180o (kề bù)
Do đó, BKE + BKD = 180o
=> EKD = 180o
hay 3 điểm E, K, D thẳng hàng (đpcm)