Cho tam giác ABC có AB = 9cm, AC = 12cm. Trên cạnh AB lấy điểm H và trên cạnh AC lấy điểm K sao cho AH = 6cm, AK=8cm
a/ Chứng minh: HK // BC
b/ Cho biết BC = 18cm. Tính HK
c, Gọi M là trung điểm BC , AM cắt HK tại I . Chứng minh I là trunng điểm của HK
nêu rõ cách giải
Cho tam giác ABC, lấy điểm M thuộc BC và N thuộc AM. Gọi I,K lần lượt là trung điểm của BN và CN. Tia MI cắt AB tại E, tia MK cắt AC tại F. Chứng minh EF song song BC
cho tam giác ABC , AB= 10 cm , AC = 15cm , AM là trung tuyến. Trên AB lấy D sao cho AD = 4cm , trên AC lấy E sao cho CE = 9cm. gọi I là giao điểm DE và AM , cmr :
a) DE//BC
b) I là trung điểm DE
c) Gọi O là giao điểm của BE và CD , chứng minh A , O , M thẳng hàng
BT1: Cho tam giác ABC, trung tuyến AM.Lấy điểm N trên cạnh AB, điểm Q trên cạnh AC sao cho NQ// BC. Gọi K là giao của AM và NQ. Cmr: NK=KQ.
BT2: Cho hình bình hành ABCD, trên tia đối của tia CB lấy điểm I, AI cắt BD,
DC lần lượt ở K,G. Chứng minh:
a, CI/IB=IG/AT
b, DG/DC=DK/KB
c, AK.BI = KI.AD
d, AK2= KG.KI
Cho tam giác ABC. Trên cạnh AB và AC lần lượt lấy E và F sao cho AE = AF. AM là trung tuyến và I là giao điểm của EF và MA. Chứng minh IE/IF = AC / AB
Cho DABC vuông tại A, đường phân giác của góc A cắt BC tại D biết AB = 6 cm , AC = 8 cm . a) Tính BC, BD, DC b) Từ trung điểm M của BC kẻ 1 đường thẳng song song với AD cắt cạnh AC tại F và cắt tia đối của tia AB tại E .Chứng minh: . c) Chứng minh: AE = AF
Cho tam giác ABC, D là một điểm trên AB và \(\dfrac{AD}{AC}\)=\(\dfrac{AC}{AB}\)= \(\dfrac{2}{3}\). M là trung điểm của CD. AM cắt BC tại E. Tìm \(\dfrac{CE}{BE}\)
Cho tam giác ABC cân tại A. Đường vuông góc với BC tại B cắt đường vuông góc với AC tại C ở D. Vẽ BE vuông góc với CD tại E, gọi M là giao điểm của AD và BE.. Vẽ EN vuông góc BD tại N
a) Chứng minh DE/DM=DC/DA
b) Chứng minh MN//AB
c) Chứng minh ME=MB
Cho tam giác ABC có AB = 3,6 cm , AC = 4,8 cm trên AB lấy M trên AC lấy N sao cho AM = 3cm ,AN =4cm .Chứng minh
a, MN//BC
b, Gọi D là trung điểm BC . K là giao điểm của AD và MN . Chứng minh K là trung điểm MN