Lời giải:
Áp dụng định lý Menelaus cho tam giác $ABN$ và 3 điểm $E,I,M$ thẳng hàng thì:
$\frac{EA}{EB}.\frac{IB}{IN}.\frac{MN}{MA}=1$
$\Leftrightarrow \frac{EA}{EB}.\frac{MN}{MA}=1$
$\Leftrightarrow \frac{EA}{EB}=\frac{MA}{MN}(1)$
Tương tự với tam giác $ACN$ với $F, K,M$ thẳng hàng:
$\frac{FA}{FC}=\frac{MA}{MN}(2)$
Từ $(1); (2)\Rightarrow \frac{EA}{EB}=\frac{FA}{FC}$
Theo định lý Talet đảo thì $EF\parallel BC$ (đpcm)
- Khái niệm và cách chứng minh định lí Menelaus:
https://vi.wikipedia.org/wiki/%C4%90%E1%BB%8Bnh_l%C3%BD_Menelaus