Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
ღ๖ۣۜBĭη➻²ƙ⁸ღ
Xem chi tiết
Akai Haruma
25 tháng 2 2021 lúc 16:50

Lời giải:

Áp dụng định lý Pitago:

$AC=\sqrt{BC^2-AB^2}=\sqrt{13^2-5^2}=12$ (cm)

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{5.12}{13}=\frac{60}{13}$ (cm)

$CH=\sqrt{AC^2-AH^2}=\sqrt{12^2-(\frac{60}{13})^2}=\frac{144}{13}$ (cm)

$BH=BC-CH=13-\frac{144}{13}=\frac{25}{13}$ (cm)

 

Akai Haruma
25 tháng 2 2021 lúc 16:51

Hình vẽ:

undefined

Hoang NGo
Xem chi tiết
Nguyễn Huy Tú
13 tháng 2 2022 lúc 17:01

Áp dụng định lí Pytago tam giác ABC vuông tại A

\(AC=\sqrt{BC^2-AB^2}=12cm\)

Ta có : \(S_{ABC}=\dfrac{1}{2}AB.AC;S_{ABC}=\dfrac{1}{2}AH.BC\Rightarrow AB.AC=AH.BC\)

\(\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{60}{13}cm\)

Theo định lí Pytago tam giác ABH vuông tại H

\(BH=\sqrt{AB^2-AH^2}=\dfrac{25}{13}cm\)

-> CH = BC - BH = \(13-\dfrac{25}{13}=\dfrac{154}{13}\)cm 

SKY
Xem chi tiết
Quandung Le
Xem chi tiết
hỏi đáp
Xem chi tiết
Trần gia huy
Xem chi tiết
Dr. Lemon
Xem chi tiết
Dr. Lemon
16 tháng 2 2021 lúc 11:07

Cho mk xin hình luôn nhé 

Nguyễn Ngọc Lộc
16 tháng 2 2021 lúc 11:18

- Áp dụng định lý pi ta go vào tam giác ABC vuông tại A ta được :

\(AB^2+AC^2=BC^2\)

\(\Rightarrow AC^2+5^2=13^2\)

\(\Rightarrow AC=12\left(cm\right)\)

- Xét tam giác BHA và tam giác BAC có : \(\left\{{}\begin{matrix}\widehat{BHA}=\widehat{BAC}=90^o\\\widehat{B}\left(chung\right)\end{matrix}\right.\)

=> Hai tam giác trên đồng dạng .

=> \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\)

=> \(BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\)

=> \(CH=BC-BH=\dfrac{144}{13}\left(cm\right)\)

- Áp dụng định lý pi ta go vào tam giác ABH vuông tại H ta được :

\(AH^2+BH^2=AB^2\)

\(\Rightarrow AH=\dfrac{60}{13}\left(cm\right)\)

Vậy ...

Nguyễn Lê Phước Thịnh
16 tháng 2 2021 lúc 11:33

Áp dụng định lí Pytago vào ΔABC vuông tại A, ta được:

\(BC^2=AB^2+AC^2\)

\(\Leftrightarrow AC^2=BC^2-AB^2=13^2-5^2=144\)

hay AC=12(cm)

Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:

\(AH\cdot BC=AB\cdot AC\)

\(\Leftrightarrow AH\cdot13=5\cdot12\)

\(\Leftrightarrow AH\cdot13=60\)

hay \(AH=\dfrac{60}{13}cm\)

Áp dụng định lí Pytago vào ΔABH vuông tại H, ta được:

\(AB^2=BH^2+AH^2\)

\(\Leftrightarrow BH^2=AB^2-AH^2=5^2-\left(\dfrac{60}{13}\right)^2=\dfrac{625}{169}\)

hay \(BH=\dfrac{25}{13}cm\)

Ta có: BH+CH=BC(H nằm giữa B và C)

\(\Leftrightarrow CH=BC-BH=13-\dfrac{25}{13}\)

hay \(CH=\dfrac{144}{13}cm\)

Vậy: AC=12cm; \(AH=\dfrac{60}{13}cm\)\(BH=\dfrac{25}{13}cm\)\(CH=\dfrac{144}{13}cm\)

Trần Khánh Chi
Xem chi tiết
Nguyễn Nam Dương
4 tháng 2 2022 lúc 15:02

Áp dụng định lý Pitago:

$AC=\sqrt{BC^2-AB^2}=\sqrt{13^2-5^2}=12$ (cm)

$AH=\frac{2S_{ABC}}{BC}=\frac{AB.AC}{BC}=\frac{5.12}{13}=\frac{60}{13}$ (cm)

$CH=\sqrt{AC^2-AH^2}=\sqrt{12^2-(\frac{60}{13})^2}=\frac{144}{13}$ (cm)

$BH=BC-CH=13-\frac{144}{13}=\frac{25}{13}$ (cm)

Khách vãng lai đã xóa
Nguyễn Nam Dương
4 tháng 2 2022 lúc 15:06

- Áp dụng định lý pi ta go vào tam giác ABC vuông tại A ta được :

\(AB^2+AC^2=BC^2\)

\(\Rightarrow AC^2+5^2=13^2\)

\(\Rightarrow AC=12\left(cm\right)\)

- Xét tam giác BHA và tam giác BAC có : \(\left\{{}\begin{matrix}\widehat{BHA}=\widehat{BAC}=90^o\\\widehat{B}\left(chung\right)\end{matrix}\right.\)

=> Hai tam giác trên đồng dạng .

=> \(\dfrac{BH}{AB}=\dfrac{AB}{BC}\)

=> \(BH=\dfrac{AB^2}{BC}=\dfrac{25}{13}\left(cm\right)\)

=> \(CH=BC-BH=\dfrac{144}{13}\left(cm\right)\)

- Áp dụng định lý pi ta go vào tam giác ABH vuông tại H ta được :

\(AH^2+BH^2=AB^2\)

\(\Rightarrow AH=\dfrac{60}{13}\left(cm\right)\)

Khách vãng lai đã xóa
Lê Song Phương
4 tháng 2 2022 lúc 18:04

\(\Delta ABC\)vuông tại A \(\Rightarrow BC^2=AB^2+AC^2\)(đl Py-ta-go)\(\Rightarrow AC^2=BC^2-AB^2\)\(\Rightarrow AC=\sqrt{BC^2-AB^2}\)

\(\Rightarrow AC=\sqrt{13^2-5^2}=12\left(cm\right)\)

Nhận thấy \(\Delta ABC\)vuông tại A nên diện tích \(\Delta ABC\)là \(S_{ABC}=\frac{1}{2}AB.AC\)(1)

\(\Delta ABC\)có đáy BC và đường cao tương ứng AH nên ta có \(S_{ABC}=\frac{1}{2}AH.BC\)(2)

Từ (1) và (2) \(\Rightarrow\frac{1}{2}AB.AC=\frac{1}{2}AH.BC\)\(\Rightarrow AB.AC=AH.BC\)\(\Rightarrow AH=\frac{AB.AC}{BC}\)\(\Rightarrow AH=\frac{5.12}{13}\approx4,615\left(cm\right)\)

Biết được AH thì tính BH và CH khá dễ nhờ xét định lý Py-ta-go trong các tam giác vuông ABH và ACH (đều vuông tại H)

Khách vãng lai đã xóa
nguyenvanhoang
Xem chi tiết