Giai PT nay ho mik vs
x+5/x - 2x-3/x^2-x = -2/x-1
\(2x-\frac{4-3x}{\frac{5}{15}}=7x-\frac{x-3}{\frac{2}{5}}-x+1\)
\(\frac{5x-1}{10}+\frac{2x+3}{6}=\frac{x-8}{15}-\frac{x}{30}\)
giai ho minh 2 bai nay nha
nhanh mik tk
\(\frac{5x-1}{10}+\frac{2x+3}{6}=\frac{x-8}{15}-\frac{x}{30}\)
\(\Rightarrow\frac{3\left(5x-1\right)}{30}+\frac{5\left(2x+3\right)}{30}=\frac{2\left(x-8\right)}{30}-\frac{x}{30}\)
\(\Rightarrow15x-3+10x+15=2x-16-x\)
\(\Rightarrow24x=-28\)
\(\Rightarrow x=-\frac{7}{6}\)
giai giup mik vs
cho pt: 3(a-2)x+2a(x-1)=4a+3 (1)
a) giai pt (1) vs a= -2
b) tim a de pt (1) co nghiem x=1
xin cam on
a) với a = -2 ta được phương trình:
3.[(-2) - 2].x + 2.(-2).(x - 1) = 4.(-2) + 3
<=> 3.(-4x) - 4.(x - 1) = (-8) + 3
<=> -12x - 4(x - 1) = -5
<=> -12x - 4x + 4 = -5
<=> -16x + 4 = -5
<=> -16x = -5 - 4
<=> -16x = -9
<=> x = 9/16
b) để x = 1, ta có:
3.(a - 2).1 + 2a(1 - 1) = 4a + 3
<=> 3(a - 2) + 0 = 4a + 3
<=> 3a - 6 = 4a + 3
<=> 3a - 6 - 4a = 3
<=> -a - 6 = 3
<=> -a = 3 + 6
<=> a = -9
|2x+1|+|4x+1|+|6x+1|=5
|x+1/2|+|x+1/3|+|x+1/4|=x
Giai giup mik vs😊😊
giai chi tiet ho e pt nay voi a. e quen mat cah giai
1/5 x a + 2 + 1/2 x a + 7 = a
giup e voi ạ
Theo đầu bài ta có:
\(\frac{1}{5}\cdot a+2+\frac{1}{2}\cdot a+7=a\)
\(\Rightarrow2+7=a-\frac{1}{2}\cdot a-\frac{1}{5}\cdot a\)
\(\Rightarrow a\cdot\frac{3}{10}=9\)
\(\Rightarrow a=30\)
\(\frac{1}{5}a+2+\frac{1}{2}a+7=a\left(\frac{1}{5}+\frac{1}{2}\right)+2+7=\frac{7}{10}a+10=\frac{7a}{10}+10\)
\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-\sqrt{2x-5}}\)
giai pt tren ho minh nha
\(\sqrt{x+2+3\sqrt{2x-5}}+\sqrt{x-2-2\sqrt{2x-5}}=2\sqrt{2}\)
nhân 2 vế với căn 2 ta có
\(\sqrt{2x+4+6\sqrt{2x-5}}+\sqrt{2x-4-2\sqrt{2x-5}}=4\)
<=>\(\sqrt{\left(\sqrt{2x-5}+3\right)^2}+\sqrt{\left(\sqrt{2x-5}-1\right)^2}=4\)
<=>\(\left|\sqrt{2x-5}+3\right|+\left|\sqrt{2x-5}-1\right|=4\)
đến đây bạn tự giải nốt nhé
minh viet thieu nha :trên là VP ,VT=\(2\sqrt{2}\)
a. Giai pt : 2x(8x-1)^2(4x-2)=9
b. giai pt : x^2-y^2+2x-4y-10=0 vs x,y thuoc so nguyen duong
giai phuong trinh sau
a) (x+2)^2x-1)^2=2(x+3)(x+1)
b) (10x+1)/7= (7x-2)/ 4
c) (x-4)/5- 2= (1+19x)/ 6
ho minh nhanh vs a
b) \(\frac{10x+1}{7}=\frac{7x-2}{4}\)
<=> \(\frac{4\left(10x+1\right)}{28}=\frac{7\left(7x-2\right)}{28}\)
<=> 40x + 4 = 49x - 14
<=> 40x - 49x = -14 - 4
<=> -9x = -18
<=> x = 2
Vậy S = {2}
c) \(\frac{x-5}{5}-2=\frac{1+19x}{6}\)
<=> \(\frac{6\left(x-5\right)-60}{30}=\frac{5\left(1+19x\right)}{30}\)
<=> 6x - 30 - 60 = 5 + 95x
<=> 6x - 95x = 5 + 90
<=> -89x = 95
<=> x = -95/89
Vậy S = {-95/89}
giai pt này giùm mik đê:\(\dfrac{2x-5}{x-2}-\dfrac{3x-5}{x-1}=-1\)
ĐKXĐ: x\(\ne2\), \(x\ne1\)
\(\dfrac{2x-5}{x-2}-\dfrac{3x-5}{x-1}=-1\)
<=> \(\dfrac{\left(2x-5\right)\left(x-1\right)}{\left(x-1\right)\left(x-2\right)}-\dfrac{\left(3x-5\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}=\dfrac{-1.\left(x-1\right)\left(x-2\right)}{\left(x-1\right)\left(x-2\right)}\)
=> 2x2-2x-5x+5-3x2+6x+5x-10= -x2+2x-2+x
<=> 2x2-2x-5x+5-3x2+6x+5x-10+x2-2x+2-x=0
<=> x-3=0
<=> x=3 (thỏa mãn ĐKXĐ)
Vậy S=\(\left\{3\right\}\)
cho he phuong trinh:
\(\left\{{}\begin{matrix}x+2y=m+1\\2x+3y=m-2\end{matrix}\right.\)
a. Giai he pt vs m=1
b. Tim m de he pt co nghiem (x;y) thoa man \(\left\{{}\begin{matrix}x>3\\y< 5\end{matrix}\right.\)
a) Thay m=1 vào hệ phương trình, ta được:
\(\left\{{}\begin{matrix}x+2y=2\\2x+3y=-1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=4\\2x+3y=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=5\\x+2y=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=5\\x+10=2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-8\\y=5\end{matrix}\right.\)
Vậy: Khi m=1 thì hệ phương trình có nghiệm duy nhất là (x,y)=(-8;5)
b) Ta có: \(\left\{{}\begin{matrix}x+2y=m+1\\2x+3y=m-2\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}2x+4y=2m+2\\2x+3y=m-2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}y=m+4\\x+2\cdot\left(m+4\right)=m+1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x+2m+8=m+1\\y=m+4\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=-m-7\\y=m+4\end{matrix}\right.\)
Để hệ phương trình có nghiệm (x,y) thỏa mãn x>3 và y<5 thì \(\left\{{}\begin{matrix}-m-7>3\\m+4< 5\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-m>10\\m< 1\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}m< -10\\m< 1\end{matrix}\right.\Leftrightarrow m< -10\)
Vậy: Để hệ phương trình có nghiệm (x,y) thỏa mãn x>3 và y<5 thì m<-10