Bài 1 : Tìm GTNN của biểu thức A=\(\frac{x^4+3x^2+3}{x^2-1}\)
Bài 2 : Tìm các giá trị nguyên của x để biểu thức B =\(\frac{x-2}{x^3-2x^2+4}\) có giá trị nguyên
Bài 1: Giải phương trình sau:
\(2x^2+5+2\sqrt{x^2+x-2}=5\sqrt{x-1}+5\sqrt{x+2}\)
Bài 2: Cho biểu thức
\(P=\left(\frac{6x+4}{3\sqrt{3x^2}-8}-\frac{\sqrt{3x}}{3x+2\sqrt{3x}+4}\right).\left(\frac{1+3\sqrt{3x^2}}{1+\sqrt{3x}}-\sqrt{3x}\right)\)
a) Tìm ĐKXĐ và rút gọn biểu thức P
b) Tìm tất cả các giá trị nguyên của x để biểu thức P có giá trị nguyên
Bài 3: Cho biểu thức
\(A=\frac{\sqrt{x+4\sqrt{x-4}}+\sqrt{x-4\sqrt{x-4}}}{\sqrt{1-\frac{8}{x}+\frac{16}{x^2}}}\)
a) Tìm ĐKXĐ và rút gọn biểu thức A
b) Tìm tất cả các giá trị nguyên của x để biểu thức A có giá trị nguyên
Bài 1 : Cho biểu thức A = \(\frac{x}{x+2}\) + \(\frac{4-2x}{x^2-4}\)
a ) Tìm điều kiện của x để biểu thức A có nghĩa
b ) Rút gọn biểu thứ A
c ) Tìm giá trị của x khi A = 0
Bài 2 : cho biểu thức B = \(\frac{x}{x+3}\)+ \(\frac{9-3x}{x^2-9}\)
a ) Tìm điều kiện của x để biểu thức B có nghĩa
b ) Rút gọn biểu thứ B
c ) Tìm giá trị của x khi B = 0
Bài 3 : Cho phân thức : A =\(\frac{x^2+2x+1}{x^2-x-2}\)
a ) Tìm x để biểu thức A xác định
b ) Rút gọn biểu thức A
c ) Tính giá trị của biểu thức A khi x = 0 , 1 , 2012
d ) Tìm các giá trị nguyên của x để A nhận giá trị nguyên
Bài 4 : Cho biểu thức : A =\(\frac{1}{x+1}\)+ \(\frac{1}{x-1}\)- \(\frac{2}{x^2-1}\)
a ) tìm điều kiện của x để biểu thức A có nghĩa
b ) Rút gọn biểu thức A
C ) Tìm giá trị nguyên của x để biểu thức A nhận giá trị nguyên
CÁC BẠN GIẢI ĐƯỢC BÀI NÀO THÌ GIẢI GIÚP MÌNH VỚI NHÉ KHÔNG NHẤT THIẾT PHẢI GIẢI HẾT ĐÂU ! BÂY GIỜ MÌNH ĐANG RẤT CẦN CÁC BẠN CỐ GẮNG NHÉ !
Dài quá trôi hết đề khỏi màn hình: nhìn thấy câu nào giải cấu ấy
Bài 4:
\(A=\frac{\left(x-1\right)+\left(x+1\right)}{\left(x+1\right)\left(x-1\right)}-\frac{2}{\left(x+1\right)\left(x-1\right)}=\frac{2\left(x-1\right)}{\left(x-1\right)\left(x+1\right)}\)
a) DK x khác +-1
b) \(dk\left(a\right)\Rightarrow A=\frac{2}{\left(x+1\right)}\)
c) x+1 phải thuộc Ước của 2=> x=(-3,-2,0))
1. a) Biểu thức a có nghĩa \(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x^2-4\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x+2\ne0\\x-2\ne0\\x+2\ne0\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}x\ne-2\\x\ne2\end{cases}}\)
Vậy vs \(x\ne2,x\ne-2\) thì bt a có nghĩa
b) \(A=\frac{x}{x+2}+\frac{4-2x}{\left(x-2\right)\left(x+2\right)}\)
\(=\frac{x\left(x-2\right)}{\left(x+2\right)\left(x-2\right)}+\frac{4-2x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-2x+4-2x}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x^2-4x+4}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{\left(x-2\right)^2}{\left(x+2\right)\left(x-2\right)}\)
\(=\frac{x-2}{x+2}\)
c) \(A=0\Leftrightarrow\frac{x-2}{x+2}=0\)
\(\Leftrightarrow x-2=\left(x+2\right).0\)
\(\Leftrightarrow x-2=0\)
\(\Leftrightarrow x=2\)(ko thỏa mãn điều kiện )
=> ko có gía trị nào của x để A=0
Bài 1:
a) \(x+2\ne0\Leftrightarrow x\ne-2\)
\(x^2-4\ne0\Leftrightarrow x\ne+_-2\)
b) \(A=\frac{x}{x+2}+\frac{4-2x}{x^2-4}=\frac{x-2}{x+2}\)
c) \(A=0\Leftrightarrow\frac{x-2}{x+2}=0\Leftrightarrow x-2=0\Leftrightarrow x=2\)
Mà đk: x khác 2
Vậy ko tồn tại giá trị nào của x để A=0
Bài 1: Cho biểu thức P=\(\frac{x^4-x}{x^2+x+1}-\frac{2x^2+x}{x}+\frac{2\left(x^2-1\right)}{x-1}\)
a) Rút gọn P.
b) Tìm GTNN của P.
c) Tìm các giá trị dương của x để biểu thức Q=\(\frac{2x}{P}\) nhận giá trị là số nguyên.
Bài 1:Tìm giá trị nguyên của x để biểu thức A = \(\frac{4x-3}{2x+1}\)có giá trị là số nguyên
Bài 2: Tìm giá trị nguyên của x để biểu thức A = \(\frac{3}{4-x}\)đạt giá trị lớn nhất.Tìm GTLN đó
Bài 3: Tìm giá trị nguyên x để biểu thức B = \(\frac{7-x}{4-x}\)Đạt GTLN.Tìm GTLN đó
lưu ý các bn nào giải đc bài nào thì viết ra ko nhất thiết là phải cả 3 bài nhưng nếu làm cả 3 bài mk tick cho 3 cái(dùng nick phụ tick nữa)
Để A đạt GTLN thì \(\frac{3}{4-x}\)phải đạt giá trị lớn nhất\(\Rightarrow\)4-x phải bé nhất và 4-x>0
\(\Rightarrow4-x=1\rightarrow x=3\)
thay vào ta đc A=3
B3
\(B=\frac{7-x}{4-x}=\frac{4-x+3}{4-x}=\frac{4-x}{4-x}+\frac{3}{4-x}\)\(=1+\frac{3}{4-x}\)
Để b đạt GTLn thì 3/4-x phải lớn nhất (làm tương tụ như bài 2 )
Vậy gtln của 3/4-x là 3 thay vào ta đc b=4
Lâm như bài 2 Gtln của\(\frac{3}{4-x}\)
B1\(\frac{4x-3}{2x+1}=\frac{4x+2-5}{2x+1}=\frac{2.\left(2x+1\right)-5}{2x+1}\)\(=\frac{2.\left(2x+1\right)}{2x+1}-\frac{5}{2x+1}=2-\frac{5}{2x+1}\)
VÌ A\(\varepsilon Z\),2\(\varepsilon Z\)\(\Rightarrow\)\(\frac{5}{2x+1}\varepsilon Z\)\(\rightarrow2x+1\varepsilonƯ\left(5\right)\)={1;-1;5;-5}
\(\Rightarrow\)x={0;-1;23}
Bài 1: Cho biểu thức P = \(\left(\frac{x+4}{x-4}-\frac{x-4}{x+4}+\frac{12x}{16-x^2}\right):\left(1+\frac{17}{x^2-16}\right)\)
a) Rút gọn P
b) Tìm x để P>0
c) So sánh P với 2
Bài 2: Cho biểu thức P=\(\left(\frac{2+x}{2-x}-\frac{4x^2}{x^2-4}-\frac{2-x}{2+x}\right):\frac{x^2-3x}{2x^2-x^3}\)
a) Rút gọn biểu thức P
b) Tính giá trị của P biết /x-5/=2
c) Tìm x để P<0
Bài 3:Cho biểu thức P =\(\frac{x+2}{x+3}-\frac{5}{x^2+x-6}+\frac{1}{2-x}\)
a) Tìm điều kiện xác định của P
b) Rút gọn biểu thức P
c) Tìm x để P=\(\frac{-3}{4}\)
d) Tìm giá trị nguyên của x để biểu thức P cũng có giá trị nguyên
Bài 1:Tìm GTLN của biểu thức D=\(\frac{4}{\left(2x-3\right)^2+5}\)
Bài 2:Cho biểu thức E=\(\frac{5-x}{x-2}\)
Tìm các giá trị nguyên của x để
a) E có giá trị nguyên
b) E có giá trị nhỏ nhất
Để \(D=\frac{4}{\left(2x-3\right)^2+5}\) đạt gtln <=> \(\left(2x-3\right)^2+5\) đạt gtnn
Vì \(\left(2x-3\right)^2\ge0\)
\(\Rightarrow\left(2x-3\right)^2+5\ge5\) có gtnn là 5
Dấu "=" xảy ra <=> \(\left(2x-3\right)^2=0\) => \(x=\frac{3}{2}\)
Vậy gtln của D là \(\frac{4}{5}\) tại \(x=\frac{3}{2}\)
1. Tìm các giá trị nguyên của x để các biểu thức sau có giá trị lớn nhất
a. A=1/7-x b.B=27-2x/12-X
2.Tìm các giá trị nguyên của x để các biểu thức sau có giá trị nhỏ nhất
a. A=1/x-3 b. B= 7-x/x-5 c. C= 5x-19/x-4
3.Tìm giá trị nhỏ nhất của các biếu thức sau
a. A=x^4+3x^2 +2 b. B=(x^4+5)^2 c. C=(x-1)^2+(y+2)^2
4.Tìm giá trị lớn nhất của các biểu thức sau
a. A=5-3(2x-1)^2 b.B=1/2(x-1)^2+3 c. C=x^2+8/x^2+2
Cho biểu thức: \(P=\left(\frac{x+2}{3x}+\frac{2}{x+1}-3\right):\frac{2-4x}{x+1}+\frac{3x+1-x^2}{3x}\)
1) rút gọn biểu thức P
2) tìm giá trị của P biết /x/=1/3
3) tìm các giá trị nguyên của x để biểu thức A có giá trị là số nguyên
Cho biểu thức: A = (x/x^2-4-4/2-x+1/x+2):3x+3/x^2+2x
a) Tìm điều kiện xác định của A và rút gọn biểu thức A;
b) Tính giá trị của biểu thức A khi |2x-3|-x+1=0
c) Tìm giá trị nguyên của x để A nhận giá trị nguyên.
a: \(A=\left(\dfrac{x}{x^2-4}+\dfrac{4}{x-2}+\dfrac{1}{x+2}\right):\dfrac{3x+3}{x^2+2x}\)
\(=\dfrac{x+4x+8+x-2}{\left(x-2\right)\left(x+2\right)}\cdot\dfrac{x\left(x+2\right)}{3\left(x+1\right)}\)
\(=\dfrac{6\left(x+1\right)\cdot x\left(x+2\right)}{3\left(x+1\right)\left(x-2\right)\left(x+2\right)}\)
\(=\dfrac{2x}{x-2}\)
Bài 1 : Tìm giá trị của m để PT
\(3-m=\frac{10}{x+2}\)
có nghiệm là số dương
Bài 2 : Cho A=\(\frac{4x-4}{1-2x+x^2}\)
Tìm x để A <0
Bài 3 : Tìm giá trị nguyên của x để giá trị của biểu thức sau là số nguyên:
A=\(\frac{2x^3-6x^2+x-8}{x-3}\)
B= \(\frac{3x^2-x+3}{3x+2}\)
\(3-m=\frac{10}{x+2}\)
\(\Leftrightarrow\left(3-m\right)\left(x+2\right)=10\)
=> 3-m và x+2 thuộc Ư (10)={1;2;5;10}
TH1: \(\hept{\begin{cases}3-m=1\\x+2=10\end{cases}\Leftrightarrow\hept{\begin{cases}m=2\\x=8\end{cases}}}\)hoặc \(\hept{\begin{cases}3-m=10\\x+2=1\end{cases}\Leftrightarrow\hept{\begin{cases}m=-7\\x=1\end{cases}}}\)
TH2: \(\hept{\begin{cases}3-m=5\\x+2=2\end{cases}\Leftrightarrow\hept{\begin{cases}m=-2\\x=0\end{cases}}}\)hoặc \(\hept{\begin{cases}3-m=2\\x+2=5\end{cases}\Leftrightarrow\hept{\begin{cases}m=1\\x=-3\end{cases}}}\)(loại)
bài 3:
\(A=\frac{2x^3-6x^2+x-8}{x-3}\left(x\ne3\right)\)
\(\Leftrightarrow A=\frac{\left(2x^3-6x^2\right)+\left(x-8\right)}{x-3}=\frac{2x\left(x-3\right)+\left(x-8\right)}{x-3}=2x+\frac{x-8}{x-3}\)
Để A nguyên thì \(\frac{x-8}{x-3}\)nguyên
Có: \(\frac{x-8}{x-3}=\frac{x-3-5}{x-3}=1-\frac{5}{x-3}\)
Vì x nguyên => x-3 nguyên => x-3 \(\inƯ\left(5\right)=\left\{-5;-1;1;5\right\}\)
Ta có bảng
x-3 | -5 | -1 | 1 | 5 |
x | -2 | 2 | 4 | 8 |