A=n+1/n+2 là phân số tối giản vớ mọi số nguyên n khác -2
a) Cho biểu thức A=3/2+n n khác -2 Tìm các số nguyên n để A là một số nguyên.
b) Chứng minh phân số n+6/n=7 là phân số tối giản với mọi số n nguyên và n khác -7 .
a: Để A nguyên thì \(n+2\in\left\{1;-1;3;-3\right\}\)
=>\(n\in\left\{-1;-3;1;-5\right\}\)
b: n+6/n+7
Gọi d=ƯCLN(n+6;n+7)
=>n+6-n-7 chiahết cho d
=>-1 chia hết cho d
=>d=1
=>PSTG
Bài 1: Cho phân số n - 1 / n - 2 ( n thuộc Z ; n khác 2 ). Tìm n để A là phân số tối giản
Bài 2: Với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản: A = 2n + 1 / 2n + 3
Câu 1:
gọi n-1/n-2 là M.
Để M là phân số tối giản thì ƯCLN (n - 1; n - 2) = 1 hay -1
Theo đề bài: M = n−1n−2n−1n−2 (n ∈∈Zℤ; n ≠2≠2)
Gọi d = ƯCLN (n - 1; n - 2)
=> n - 1 - (n - 2) ⋮⋮d *n - 1 - (n - 2) = n - 1 - n + 2 = n - n + 2 - 1 = 0 + 2 - 1 = 2 - 1 = 1
=> 1 ⋮⋮d
=> d ∈∈Ư (1)
Ư (1) = {1}
=> d = 1
Mà ngay từ lúc đầu d phải bằng 1 rồi.
Vậy nên với mọi n ∈∈Z và n ≠2≠2thì M là phân số tối giản.
a) Tìm số tự nhiên n để phân số M= n-1/n-2( n thuộc Z, n khác 2) là phân số tối giản
b) Chứng minh rằng với mọi số tự nhiên n, A = 2n+1/2n+3 là phân số tối giản
bài 1: với mọi số tự nhiên n chứng minh các phân số sau là phân số tối giản
A=2n+1/2n+2
B=2n+3/3n+5
Bài 2:
a) Cho phân số: N=5n+7/2n+1( n thuộc Z, n khác -1/2). Tìm n để N là phân số tối giản
b) Cho phân số: P=5-2n/4n+5 ( n thuộc Z, n khác -5/4). Tìm n để P là phân số tối giản
giúp mk với
mk sẽ tick cho!!
b1 :
a, gọi d là ƯC(2n + 1;2n +2)
=> 2n + 1 chia hết cho d và 2n + 2 chia hết cho d
=> 2n + 2 - 2n - 1 chia hết cho d
=> 1 chia hết cho d
=> d = 1
=> 2n+1/2n+2 là ps tối giản
Bài 1: Với mọi số tự nhiên n, chứng minh các phân số sau là phân số tối giản:
A=2n+1/2n+2
Gọi ƯCLN của chúng là a
Ta có:2n+1 chia hết cho a
2n+2 chia hết cho a
- 2n+2 - 2n+1
- 1 chia hết cho a
- a= 1
Vậy 2n+1/2n+2 là phân số tối giản
B=2n+3/3n+5
Gọi ƯCLN của chúng là a
2n+3 chia hết cho a
3n+5 chia hết cho a
Suy ra 6n+9 chia hết cho a
6n+10 chia hết cho a
6n+10-6n+9
1 chia hết cho a
Vậy 2n+3/3n+5 là phân số tối giản
Mình chỉ biết thế thôi!
#hok_tot#
các bn giải hộ mk bài 2 ik
thật sự mk đang rất cần nó!!!
chứng minh rằng n+1 phần n+2 là phân số tối giản với mọi số nguyên n
Gọi d=ƯCLN(n+1;n+2)
=>n+1-n-2 chia hết cho d
=>-1 chia hết cho d
=>d=1
=>PSTG
CMR với mọi số nguyên n, phân số 12n+1/2n(n+2) là phân số tối giản
Xét\(12n+1=12n+24-23=12\left(n+2\right)-23\)
\(\Rightarrow\frac{12n+1}{2n\left(n+2\right)}=\frac{12\left(n+2\right)-23}{2n\left(n+2\right)}=\frac{12\left(n+2\right)}{2n\left(n+2\right)}-\frac{23}{2n\left(n+2\right)}=\frac{6}{n}-\frac{23}{2n\left(n+2\right)}\)
Xét\(\frac{23}{2n\left(n+2\right)}\)ta có:
\(2n\left(n+2\right)⋮2\)
=> \(2n\left(n+2\right)\)là số chẵn
mà 23 là số lẻ
\(\Rightarrow\frac{23}{2n\left(n+2\right)}\)Tối giản
\(\Rightarrow\frac{6}{n}-\frac{23}{2n\left(n+2\right)}\)tối giản
Vậy \(\frac{12n+1}{2n\left(n+2\right)}\)Tối giản (ĐPCM)
CMR với mọi số nguyên n, phân số là phân \(\dfrac{12n+1}{2n\left(n+2\right)}\) số tối giản
Chứng minh các phân số sau là phân số tối giản với mọi số nguyên n: A= \(\dfrac{12n+1}{30n+2}\)
Gọi \(d\inƯC\left(12n+1;30n+2\right)\)
\(\Leftrightarrow\left\{{}\begin{matrix}12n+1⋮d\\30n+2⋮d\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}60n+5⋮d\\60n+4⋮d\end{matrix}\right.\)
\(\Leftrightarrow60n+5-60n-4⋮d\)
\(\Leftrightarrow1⋮d\)
\(\Leftrightarrow d\inƯ\left(1\right)\)
\(\Leftrightarrow d\in\left\{1;-1\right\}\)
\(\LeftrightarrowƯCLN\left(12n+1;30n+2\right)=1\)
hay phân số \(A=\dfrac{12n+1}{30n+2}\) là phân số tối giản(đpcm)
Gọi d∈ƯC(12n+1;30n+2)d∈ƯC(12n+1;30n+2)
⇔⎧⎨⎩12n+1⋮d30n+2⋮d⇔⎧⎨⎩60n+5⋮d60n+4⋮d⇔{12n+1⋮d30n+2⋮d⇔{60n+5⋮d60n+4⋮d
⇔60n+5−60n−4⋮d⇔60n+5−60n−4⋮d
⇔1⋮d⇔1⋮d
⇔d∈Ư(1)⇔d∈Ư(1)
⇔d∈{1;−1}⇔d∈{1;−1}
⇔ƯCLN(12n+1;30n+2)=1⇔ƯCLN(12n+1;30n+2)=1
vậy
1) Tìm số nguyên a,b biết: a^3+b^3=1216 và phân số a/b rút gọn được thành 3/5
2) Viết các phân số tối giản a/b với a,b là các số nguyên dương với a*b=100
3) Tìm các số tự nhiên a,b biết rằng a/b=132/143 và BCNN a,b=1092
4) Chứng tỏ các phhaan số sau đều là tối giản:
a) 2n+1/4n+8 ( n khác -2) ; b) 3n+2/5n+3 ( mọi n thuộc số nguyên ) ; c) n+1/2n