Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Aries của 6b
Xem chi tiết
Hải Anh
13 tháng 2 2016 lúc 11:51

A = (999993^4.499+3)-(555557^4.499+1)

A = (999993^4.499).999993^3-(555557^4.499).555557

A = (...1).(...7)-(...1).555557

A = (...7)-(...7)

A = (...0) chia hết cho 5 

Vậy A chia hết cho 5

 

 

Trần Thị Yến Nhi
13 tháng 2 2016 lúc 11:53

ta có : 31999 = (34)499.3=81.499.27

=31999 có tận cùng là 7

     71997 = (74)499. 7 = 2041499 . 7 = 71997 có tận cùng là 7

Vậy A có tận cùng bằng 0 = A : 5

kaito kid vs kudo shinic...
Xem chi tiết
Deucalion
13 tháng 2 2016 lúc 7:25

9999931999-5555571997=9999931996.9999933-5555571996.555557

=(9999934)499.........7-(5555574)499.555557

=...........1499..........7-...........1499.555557

=...................1..........7-.................1.555557

=.....................7-..................7

=................0 chia hết cho 5 vì tận cùng là:0(đpcm)

Nguyễn Hưng Phát
13 tháng 2 2016 lúc 7:24

9999931999-5555571997=9999931996.9999933-5555571996.555557

=(9999934)499.........7-(5555574)499.555557

=...........1499..........7-...........1499.555557

=...................1..........7-.................1.555557

=.....................7-..................7

=................0 chia hết cho 5 vì tận cùng là:0(đpcm)

kagamine rin len
13 tháng 2 2016 lúc 7:33

A=999993^1999-555557^1997

=999993^1996.999997^3-555557^1996.555557

=(999993^4)^499.999997^3-(555557^4)^499.555557

=....1^499. ......7-......1^499....7

=....1. .....7-......1. .....7

=.....7-...7

=....0 chia hết cho 5 vì tận cùng là 0

Nguyễn Thị Thanh Hiền
Xem chi tiết
lili
12 tháng 11 2019 lúc 21:48

hiu hiu cho số to lm chi cho khổ !!!

A= 999993^1999-555557^1997

A= (999993^4)^499 . 999993^3 - (555557^4)^499 . 555557

Có 1 số tận cùng là 3 hoặc 7 mà mũ 4 lên sẽ tận cùng là 1

=> 555557^4 và 999993^4 tận cùng là 1 

=> (999993^4)^499 và (555557^4)^499 chia 5 dư 1

Và 999993^3 và 555557 tận cùng là 7 => chia 5 dư 2

=> (999993^4)^499 . 999993^3 và  (555557^4)^499 . 555557 đều chia 5 dư 2

=> (999993^4)^499 . 999993^3 - (555557^4)^499 . 555557 chia 5 dư 

=> A chia hết cho 5.

Khách vãng lai đã xóa
.
12 tháng 11 2019 lúc 21:50

Ta có:9999931999=9999933.(9999934)499=\(\left(\overline{...7}\right)\).\(\left(\overline{...1}\right)\)=\(\overline{...7}\)

          5555571997=555557.(5555574)499=\(\left(\overline{...7}\right)\).\(\left(\overline{...1}\right)\)=\(\overline{...7}\)

Mà \(\left(\overline{...7}\right)\)-\(\left(\overline{...7}\right)\)=\(\overline{...0}\)\(⋮\)5

Vậy 9999931999-5555571997\(⋮\)5.

Khách vãng lai đã xóa
Huỳnh Uyên Như
Xem chi tiết
Nguyễn Minh Tùng
Xem chi tiết
Kinomoto Sakura
Xem chi tiết
Đinh Đức Hùng
6 tháng 2 2016 lúc 13:15

sai đề rồi !

thengocvuong
6 tháng 2 2016 lúc 13:19

ko chia hết

Cô Nàng Lạnh Lùng
6 tháng 2 2016 lúc 13:22

Đề phải là 9999931999 - 5555571997 chứ bạn?

nguyenthingan
Xem chi tiết
Nguyễn Vũ Dũng
1 tháng 2 2016 lúc 19:26

tìm các chữ số tận cùng của hai số trên ta có :

A=...3-...3=...0 Vì A có tận cùng là 0 =>A chia hết cho 5 (đpcm)

Nguyễn Thị Ghost
Xem chi tiết
Trần Thị thu Diệu
Xem chi tiết
Nguyễn Ngọc Minh Châu
29 tháng 3 2017 lúc 15:24

Ta có: \(A=999993^{1999}-555557^{1997}\)

\(=999993^{1998}.999993-555557^{1996}.555557\)

\(=\left(999993^2\right)^{999}.999993-\left(555557^2\right)^{998}.555557\)

\(=\left(...9\right)^{999}.999993-\left(...9\right)^{998}.555557\)

\(=\left(...9\right).999993-\left(...1\right).555557\)

\(=\left(...7\right)-\left(...7\right)\)\(=\left(...0\right)\)

Chữ số tận cùng của \(A=999993^{1999}-555557^{1997}\) là \(0\).

\(\Rightarrow\)\(A=999993^{1999}-555557^{1997}⋮5\)

Quìn
29 tháng 3 2017 lúc 15:19

Cho \(A=999993^{1999}-555557^{1997}\)

\(^{1999}\) có dạng \(4n+3\) nên \(999993^{1999}=\overline{...7}\)

\(^{1997}\) có dạng \(4n+1\) nên \(555557^{1997}=\overline{...7}\)

Ta có: \(\overline{...7}-\overline{...7}=\overline{...0}\)

\(\overline{...0}⋮5\) \(\Rightarrow\) \(A⋮5\)