Cho tam giác ABC, có góc A khác 90o. Các đường trung trực của AB và của AC cắt nhau tại O và cắt BC lần lượt theo thứ tự ở M và N. CMR: a/ Góc AOC = 2 góc ABC
b/ AO là tia phân giác của góc MAN
Cho tam giác ABC có góc A khác 900. Các đường trung trực của AB và AC cắt nhau tại O và cắt BC lần lượt ở M và N. CMR :
a) OB=OC
b) góc AOC = 2ABC
c) AO là tia phân giác của góc MAN
Cho tam giác ABC có Góc A là góc tù. Các đường trung trực của AB;AC cắt nhau tại O và lần lượt cắt BC tại M,N. CMR AO là tia phân giác của góc MAN
cho tam giác abc có góc a tù. các đường trung trực của Ab và AC cắt nhau tại O và cắt BC theo thứ tự là M và N. chứng minh rằng AO là tia phân giác của góc MAN
Cho tam giác ABC có góc A là góc tù. Các đường trung trực của AB; AC cắt nhau tại O và lần lượt cắt BC tại M, N. Chứng minh rằng AO là tia phân giác của góc MAN.
Theo bài 8.3 ta đã có ∠A1 = ∠B1 , ∠A2 = ∠C2 (1)
Ta có O là giao điểm của ba đường trung trực của tam giác ABC nên OA = OB = OC, hay các tam giác OAB, OAC, OBC cân tại O. Suy ra ∠(OAB) = ∠(OBA) , ∠(OAC) = ∠(OCA) , ∠(OBC) = ∠(OCB) . Kết hợp với(1) ∠(OBM) = ∠(OAM) , ∠(OCN) = ∠(OAN) , hay ∠(OAM) = ∠(OBC) = ∠(OCB) = ∠(OAN). Vậy OA là tia phân giác góc MAN.
Cho tam giác ABC có góc A tù. Các đường trung trực của AB và AC cắt nhau tại O và cắt BC theo thứ tự tại M và N. Chứng minh rằng AO tia phân giác của góc MAN.
Teo éo hiểu pạn nói gì hết
éo hiểu nên éo giải
k cho phát
Cho tam giác abc có góc a tù. các đường trung trực của Ab và AC cắt nhau tại O và cắt BC theo thứ tự là M và N. chứng minh rằng AO là tia phân giác của góc MAN.
Cho tam giác ABC với góc A là góc tù. Các đường trung trực của AB và AC cắt nhau tại O và cắt BC theo thứ tự tại M và N. Chứng minh rằng: a) ∆AOM = ∆BOM và ∆AON = ∆CON; b) Tia AO là tia phân giác của góc MAN
a: Xét ΔAOM và ΔBOM có
OM chung
MA=MB
OA=OB
=>ΔAOM=ΔBOM
Xét ΔAON và ΔCON có
OA=OC
ON chung
NA=NC
=>ΔAON=ΔCON
b: ΔAOM=ΔBOM
=>góc OAM=góc OBM
ΔAON=ΔCON
=>góc OAN=góc OCN
OA=OB
OA=OC
=>OB=OC
=>góc OBN=góc OCM
=>góc OAM=góc OAN
=>AO là phân giác của góc MAN
Cho tam giác ABC có góc A là góc tù. Các đường trung trực AB; AC cắt nhau tại O và lần lượt cắt BC tại M, N. Chứng minh rằng AO là tia phân giác của góc MAN ?
Theo bài 8.3 ta đã có\(\widehat{A_1} =\widehat{B}_1;\widehat{A_2}=\widehat{C_1} \) (1)
Ta có O là giao điểm của ba đường trung trực của tam giác ABC nên OA = OB = OC, hay các tam giác OAB, OAC, OBC cân tại O. Suy ra \(\widehat{OAB}=\widehat{OBA},\widehat{OAC}=\widehat{OCA},\widehat{OCB}=\widehat{OBC}\)Kết hợp với (1) \(\widehat{OBM}=\widehat{OAM},\widehat{OCN}=\widehat{OAN}\) hay\(\widehat{OAM}=\widehat{OBC}=\widehat{OCB}=\widehat{OAN}\) . Vậy OA là tia phân giác góc MAN.
Hình thì bạn kia vẽ rồi nên mình không vẽ nữa nha
Theo bài 8.3 ta đã cóˆA1=ˆB1;ˆA2=ˆC1A1^=B^1;A2^=C1^ (1)
Ta có O là giao điểm của ba đường trung trực của tam giác ABC nên OA = OB = OC, hay các tam giác OAB, OAC, OBC cân tại O. Suy ra ˆOAB=ˆOBA,ˆOAC=ˆOCA,ˆOCB=ˆOBCOAB^=OBA^,OAC^=OCA^,OCB^=OBC^Kết hợp với (1) ˆOBM=ˆOAM,ˆOCN=ˆOANOBM^=OAM^,OCN^=OAN^ hayˆOAM=ˆOBC=ˆOCB=ˆOANOAM^=OBC^=OCB^=OAN^ . Vậy OA là tia phân giác góc MAN.
Cho tam giác ABC có góc A là góc tù. Các đường trung trực của AB ; AC cắt nhau tại O và lần lượt cắt BC tại M, N. Chứng minh rằng AO là phân giác của góc MAN