Cho a thuộc N, a lẻ, a>3. Giải thích a^2-1 chia hết cho 24
Chứng minh A thuộc Z thì
a, ( n + 6)^2 - ( n - 6)^2 chia hết cho 24
b, n^3 + 3n^2 - n - 3 chia hết 48 ( với n số lẻ)
giải chi tiết giùm mình nha
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
1)
a)251-1
=(23)17-1\(⋮\)23-1=7
Vậy 251-1\(⋮\)7
b)270+370
=(22)35+(32)35\(⋮\)22+32=13
Vậy 270+370\(⋮\)13
c)1719+1917
=(BS18-1)19+(BS18+1)17
=BS18-1+BS18+1
=BS18\(⋮\)18
d)3663-1\(⋮\)35\(⋮\)7
Vậy 3663-1\(⋮\)7
3663-1
=3663+1-2
=BS37-2\(⋮̸\)37
Vậy 3663-1\(⋮̸\)37
e)24n-1
=(24)n-1\(⋮\)24-1=15
Vậy 24n-1\(⋮\)15
1. Chứng minh rằng:
a. 2^51 - 1 chia hết cho 7
b. 2^70 + 3^70 chia hết cho 13
c. 17^19 + 19^17 chia hết cho 18
d. 36^63 - 1 chia hết cho 7 nhưng không chia hết cho 37
e. 2^4n - 1 chia hết cho 15 với n thuộc N
2. Chứng minh rằng:
a. n^5 - n chia hết cho 30 với n thuộc N
b. n^4 - 10n^2 + 9 chia hết cho 384 với mọi n lẻ n thuộc Z
c. 10^n + 18n - 28 chia hết cho 27 với n thuộc N
3. Chứng minh rằng:
a. a^5 - a chia hết cho 5
b. n^3 + 6n^2 + 8n chia hết cho 48 với mọi n chẵn
c. Cho a là số nguyên tố lớn hơn 3. Chứng minh: a^2 - 1 chia hết cho 24
d. 2009^2010 không chia hết cho 2010
e. n^2 + 7n + 22 không chia hết cho 9
Chứng minh rằng A thuộc Z thì
a, ( n + 6)^2 - ( n - 6)^2 chia hết 24
b, n^3 + 3n^2 - n - 3 chia hết 48 ( với n số lẻ)
Giải chi tiết giùm mình nha
a.(n+6)^2-(n-6)^2
=n^2+2*2*6+6^2-n^2-2*2*6+6^2
=6^2+6^2
=36+36
=74
mà 74=24*3
=> (2+6)^2-(n-6)^2 chia hết cho 24
1. tìm n thuộc N biết 347 chia cho n dư 7 và 639 chia cho n dư 9
2.Cho a,b thuộc N; a+4b chia hết cho 13. Giải thích 10a + b chia hết cho 13
CMR
a. a^2*(a+1) +2a *(a+1) chia hết cho 6 với a thuộc Z
b. a*(2a-3) -2a*(a-1) chia hết cho 5 với a thuộc Z
c. chứng minh rằng với mọi số tự nhiên lẻ n :
1.n^2+4n+8 chia hết cho 8
2. n^3 +3n^2 -n-3 chia hết cho 48
ai trả lời nhanh mình tick nha
a)Ta có:a2(a+1)+2a(a+1)=(a2+2a)(a+1)
=a(a+1)(a+2)
Vì a(a+1)(a+2) là tích của 3 thừa số nguyên liên tiếp(a thuộc Z) nên trong tích luôn tồn tại 1 thừa số \(⋮2\);1 thừa số \(⋮3\)
mà (2;3)=1
=>a(a+1)(a+2)\(⋮2.3\)=6 hay a2(a+1)+2a(a+1)\(⋮6\)
b)Ta có:
a(2a-3)-2a(a-1)=2a2-3a-2a2+2a=-a
cái này có phải đề sai k vậy bạn
Chứng minh:
a) 24n -1 chia hết cho 15 với mọi n thuộc N
b) 3663 -1 chia hết cho 7 và không chia hết cho 37
c) n4 -10n2 +9 chia hết cho 384 với mọi n lẻ, n thuộc Z
d) a3 -a chia hết cho 3
e) a7 -a chia hết cho 7
em gửi bài qua fb thầy chữa cho, tìm fb của thầy bằng sđt nhé: 0975705122
Ta có \(n^4-10n^2+9=n^4-n^2-\left(9n^2-9\right)=n^2\left(n^2-1\right)-9\left(n^2-1\right)=\left(n^2-9\right)\left(n^2-1\right)\)
\(=\left(n-3\right)\left(n+3\right)\left(n-1\right)\left(n+1\right)=\left(n-3\right)\left(n-1\right)\left(n+1\right)\left(n+3\right)\)
Do n là số lẻ suy ra n có dạng \(2d+1\)nên ta sẽ cm \(\left(2d-2\right)2d\left(2d+2\right)\left(2d+4\right)=16\left(d-1\right)d\left(d+1\right)\left(d+2\right)⋮16\)
Giờ ta cần chứng minh \(\left(d-1\right)d\left(d+1\right)\left(d+2\right)⋮24\)thật vậy :
\(d-1;d;d+1;d+2\)là 4 số nguyên liên tiếp nên chia hết cho 8 và 3
Suy ra ta có điều phải chứng minh
Chứng tỏ nếu a thuộc N và a ko chia hết cho 3 và a lẻ thì a2-1 chia hết cho 6
+ Do a lẻ => a^2 lẻ => a^2 - 1 chẵn => a^2 - 1 chia hết cho 2 (1)
+ Do a không chia hết cho 3 => a = 3k + 1 hoặc a = 3k + 2 (k thuộc N)
Nếu a = 3k + 1 thì a^2 = (3k + 1).(3k + 1) = (3k + 1).3k + (3k + 1) = 9k 2 + 3k + 3k + 1 chia 3 dư 1
Nếu a = 3k + 2 thì a^2 = (3k + 2).(3k + 2) = (3k + 2).3k + 2.(3k + 2) = 9k 2 + 6k + 6k + 4 chia 3 dư 2
=> a^2 chia 3 dư 1 => a^2 - 1 chia hết cho 3 (2)
Từ (1) và (2), do (2;3)=1 => a 2 - 1 chia hết cho 6
nhe
Chứng tỏ a thuộc N và a không chia hết cho 3 và a lẻ thì a2 - 1 chia hết cho 6
\(a^2-1=a.a-1\)
Vì \(a.a\) là tích của hai số lẻ (theo giả thiết) giống nhau nên có chữu số tận cùng là số lẻ.
Do đó \(a.a-1\) có chữ số tận cùng là số chẵn.
\(\Rightarrow\) \(a.a-1⋮2\left(1\right)\)
Giả sử : \(a=3k+1\) ( a là số lẻ)
\(\Rightarrow a.a-1=\left(3k+1\right)\left(3k+1\right)-1\)
\(=9k^2+3k+3k+1-1=9k^2+3k+3k⋮3\)
\(\Rightarrow a.a-1⋮3\)
Giả sử : \(a=3k+2\) (a là số lẻ)
\(\Rightarrow a.a-1=\left(3k+2\right)\left(3k+2\right)-1\)
\(=9k^2+6k+6k+4-1=9k^2+6k+6k+3⋮3\)
\(\Rightarrow a.a-1⋮3\) (2)
Từ (1) và (2), ta thấy:
\(a.a-1⋮2\) và \(a.a-1:3\)
\(\Rightarrow a.a-1⋮6\Rightarrow a^2-1⋮6\left(đpcm\right)\)
~ Học tốt ~
+)Do a lẻ => a2 lẻ => a2 - 1 chẵn => a2 - 1 chia hết cho 2 ( 1 )
+) Do a không chia hết cho 3 => a = 3k hoặc a = 3k + 2 ( k thuộc N )
Nếu a = 3k + 1 thì a2 = ( 3k + 1 ) \(\times\) ( 3k + 1 )
= ( 3k + 1 ) \(\times\) 3k \(\times\) ( 3k + 1 )
= 9k2 + 3k + 3k + 1 chia 3 dư 1 .
Nếu a = 3k + 2 thì a2 =( 3k + 2 ) \(\times\) ( 3k + 2 )
= ( 3k + 2 ) \(\times\) 3k + 2 \(\times\) ( 3k + 2 )
= 9k2 + 6k + 6k + 4 chia 3 dư 2
=> a2 chia 3 dư 1 => a2 - 1 chia hết cho 3 ( 2 )
Từ (1) và (2) , do (2 ; 3 ) =1 => a2 - 1 chia hết cho 6 .