\(a^2-1=a.a-1\)
Vì \(a.a\) là tích của hai số lẻ (theo giả thiết) giống nhau nên có chữu số tận cùng là số lẻ.
Do đó \(a.a-1\) có chữ số tận cùng là số chẵn.
\(\Rightarrow\) \(a.a-1⋮2\left(1\right)\)
Giả sử : \(a=3k+1\) ( a là số lẻ)
\(\Rightarrow a.a-1=\left(3k+1\right)\left(3k+1\right)-1\)
\(=9k^2+3k+3k+1-1=9k^2+3k+3k⋮3\)
\(\Rightarrow a.a-1⋮3\)
Giả sử : \(a=3k+2\) (a là số lẻ)
\(\Rightarrow a.a-1=\left(3k+2\right)\left(3k+2\right)-1\)
\(=9k^2+6k+6k+4-1=9k^2+6k+6k+3⋮3\)
\(\Rightarrow a.a-1⋮3\) (2)
Từ (1) và (2), ta thấy:
\(a.a-1⋮2\) và \(a.a-1:3\)
\(\Rightarrow a.a-1⋮6\Rightarrow a^2-1⋮6\left(đpcm\right)\)
~ Học tốt ~
+)Do a lẻ => a2 lẻ => a2 - 1 chẵn => a2 - 1 chia hết cho 2 ( 1 )
+) Do a không chia hết cho 3 => a = 3k hoặc a = 3k + 2 ( k thuộc N )
Nếu a = 3k + 1 thì a2 = ( 3k + 1 ) \(\times\) ( 3k + 1 )
= ( 3k + 1 ) \(\times\) 3k \(\times\) ( 3k + 1 )
= 9k2 + 3k + 3k + 1 chia 3 dư 1 .
Nếu a = 3k + 2 thì a2 =( 3k + 2 ) \(\times\) ( 3k + 2 )
= ( 3k + 2 ) \(\times\) 3k + 2 \(\times\) ( 3k + 2 )
= 9k2 + 6k + 6k + 4 chia 3 dư 2
=> a2 chia 3 dư 1 => a2 - 1 chia hết cho 3 ( 2 )
Từ (1) và (2) , do (2 ; 3 ) =1 => a2 - 1 chia hết cho 6 .