Cho \(a\in N\) , biết a không chia hết cho 2 & 3
Hãy chứng tỏ \(A=4a^2+3a+5\) chia hết cho 3
Giải
Từ đề bài \(\Rightarrow a\) là số có một chữ số.
Ta có các số có tận cùng là 0 ; 2 ; 4 ; 6 ; 8 thì chia hết cho 2
Vậy a không thể là 0 ; 2 ; 4 ; 6 ; 8
Các số có tổng chia hết cho 3 thì chia hết cho 3 , nhưng ở đây là số có 1 chữ số nên chỉ có các số 3 ; 9 là chia hết cho 3
Vậy a không thể là 3 ; 9
\(\Rightarrow a=1;5;7\)
Thử lần lượt với phép tính \(A=4a^2+3a+5\)
Thế số vào ta được:
\(\left[{}\begin{matrix}A=41^2+31+5\\A=45^2+35+5\\A=47^2+37+5\end{matrix}\right.\)
Khi tính giá trị mỗi phép tính. Ta thấy rằng mỗi phép tính trên đều chia hết cho 3.
\(\Rightarrow\) biểu thức được chứng minh