Ta có: \(A=a^3+3a^2+2a\)
\(=a\left(a^2+3a+2\right)\)
\(=a\left(a^2+a+2a+2\right)\)
\(=a\left[a\left(a+1\right)+2\left(a+1\right)\right]\)
\(=a\left(a+1\right)\left(a+2\right)\)
Ta có: a; a+1 và a+2 là ba số nguyên liên tiếp nên \(a\left(a+1\right)\left(a+2\right)⋮3\)
hay \(A⋮3\)(đpcm)