cho x,y dương thỏa mãn \(x^2+y^2=1\)
tìm GTLN P= xy + 3x + 3y
Cho 2 số thực dương x,y thỏa mãn x+y+1=3xy
Tìm GTLN của: \(M=\frac{3x}{y\left(x+1\right)}+\frac{3y}{x\left(y+1\right)}-\frac{1}{x^2}-\frac{1}{y^2}\)
\(3xy-1=x+y\ge2\sqrt{xy}\)
\(\Leftrightarrow\left(\sqrt{xy}-1\right)\left(3\sqrt{xy}+1\right)\ge0\)
\(\Leftrightarrow\sqrt{xy}\ge1\Leftrightarrow xy\ge1\)
Và \(xy+x+y+1=4xy\)
\(\Leftrightarrow\left(x+1\right)\left(y+1\right)=4xy\)
Ta có: \(\frac{3x}{y\left(x+1\right)}-\frac{1}{y^2}=\frac{3xy-x-1}{y^2\left(x+1\right)}=\frac{y}{y^2\left(x+1\right)}=\frac{1}{y\left(x+1\right)}\)
\(M=\frac{1}{y\left(x+1\right)}+\frac{1}{x\left(y+1\right)}=\frac{2xy+x+y}{4x^2y^2}=5xy-1\)
Xét hàm số \(f\left(t\right)=\frac{20t^2-8t\left(5t-1\right)}{16t^4}=\frac{8t-20t^2}{16t^4}\le0\)
Nên hàm số nghịch biến với \(t\ge1\)
\(\Rightarrow f\left(t\right)_{Max}=f\left(1\right)=1\Leftrightarrow M_{Max}=1\)
Đặt \(\frac{1}{x}=a,\frac{1}{y}=b\Rightarrow a+b+ab=3\)
Ta có:\(3=a+b+ab\ge3\sqrt[3]{a^2b^2}\Rightarrow ab\le1\)
Suy ra
\(M=\frac{ab}{a+1}+\frac{ab}{b+1}=ab\left(\frac{a+1+b+1}{ab+a+b+1}\right)=\frac{ab.\left(5-ab\right)}{4}=\frac{-\left[\left(ab\right)^2-2ab+1\right]+3ab+1}{4}=\frac{-\left(ab-1\right)^2+3ab+1}{4}\le1\)Dấu bằng xảy ra khi a=b=1
Cho 2 số thực dương \(x,y\) thỏa mãn \(x+y+xy=3\)
Tìm Min \(\dfrac{x\sqrt{x}}{\sqrt{x+3y}}+\dfrac{y\sqrt{y}}{\sqrt{y+3x}}\)
cho x,y là hai số dương thỏa mãn x2+y2=1. Tìm GTLN của P=xy+3x+3y
Ta có \(x+y\le\sqrt{2\left(x^2+y^2\right)}\)(bđt Bunhiacopski)
Áp dụng bđt AM-GM ta có
\(P\le\frac{x^2+y^2}{2}+3.\sqrt{2\left(x^2+y^2\right)}\)\(=\frac{1}{2}+3\sqrt{2}=\frac{1+6\sqrt{2}}{2}\)
Dấu "=" xảy ra khi \(x=y=\frac{\sqrt{2}}{2}\)
Vậy............
1. Cho x,y thỏa mãn: x2 + 5y2 - 4xy + 2y = 3. Tìm x,y sao cho x đạt GTLN
2. Cho x,y thỏa mãn: 3x2 + y2 + 2xy + 4 = 7x + 3y
a) Tìm GTNN, GTLN của biểu thức P = x + y
b) Tìm GTNN, GTLN của x
3. Cho x,y thỏa mãn: x2 + 2y2 + 2xy + 7x + 7y + 10 = 0. Tìm GTLN, GTNN của S = x + y
Answer:
3.
\(x^2+2y^2+2xy+7x+7y+10=0\)
\(\Rightarrow\left(x^2+2xy+y^2\right)+7x+7y+y^2+10=0\)
\(\Rightarrow\left(x+y\right)^2+7.\left(x+y\right)+y^2+10=0\)
\(\Rightarrow4S^2+28S+4y^2+40=0\)
\(\Rightarrow4S^2+28S+49+4y^2-9=0\)
\(\Rightarrow\left(2S+7\right)^2=9-4y^2\le9\left(1\right)\)
\(\Rightarrow-3\le2S+7\le3\)
\(\Rightarrow-10\le2S\le-4\)
\(\Rightarrow-5\le S\le-2\left(2\right)\)
Dấu " = " xảy ra khi: \(\left(1\right)\Rightarrow y=0\)
Vậy giá trị nhỏ nhất của \(S=x+y=-5\Rightarrow\hept{\begin{cases}y=0\\x=-5\end{cases}}\)
Vậy giá trị lớn nhất của \(S=x+y=-2\Rightarrow\hept{\begin{cases}y=0\\x=-2\end{cases}}\)
cho ác số dương x ,y ,z thả mãn x+y+z=3.Tìm GTLN của
B=\(\sqrt{\dfrac{xy}{xy+3z}}\)+\(\sqrt{\dfrac{yz}{yz+3x}}\)+\(\sqrt{\dfrac{zx}{zx+3y}}\)
Áp dụng bất đẳng thức AM - GM và kết hợp với giả thiết x + y + z = 3 ta có:
\(B=\sqrt{\dfrac{xy}{xy+z\left(x+y+z\right)}}+\sqrt{\dfrac{yz}{yz+x\left(x+y+z\right)}}+\sqrt{\dfrac{zx}{zx+y\left(x+y+z\right)}}\)
\(B=\sqrt{\dfrac{xy}{\left(x+z\right)\left(y+z\right)}}+\sqrt{\dfrac{yz}{\left(y+x\right)\left(z+x\right)}}+\sqrt{\dfrac{zx}{\left(z+y\right)\left(z+x\right)}}\le\dfrac{1}{2}\left(\dfrac{x}{x+z}+\dfrac{y}{y+z}+\dfrac{y}{y+x}+\dfrac{z}{z+x}+\dfrac{z}{z+y}+\dfrac{x}{z+x}\right)\)
\(B\le\dfrac{3}{2}\).
Đẳng thức xảy ra khi x = y = z = 1.
Vậy...
Bài 1: Tìm các số nguyên x,y thỏa mãn xy+2x-3y=1
Bài 2: Tìm các số nguyên dương x,y,z thỏa mãn (x+1)(y+z)=xyz+2
Bài 1: Tìm các số nguyên x,y thỏa mãn xy+2x-3y=1
Bài 2: Tìm các số nguyên dương x,y,z thỏa mãn (x+1)(y+z)=xyz+2
Cho các số thực dương x,y thỏa mãn \(\sqrt{y}\left(y+1\right)-6x-9=\left(2x+4\right)\sqrt{2x+3}-3y\). Tìm GTLN của biểu thức: \(M=xy+3y-4x^2-3\)
Cho các số x, y, z > 0 thỏa mãn x + y + z = 1. Tìm GTLN của biểu thức:
\(A=\frac{x}{9x^3+3y^2+z}+\frac{y}{9y^3+3z^2+x}+\frac{z}{9z^3+3x^2+y}+2017\left(xy+yz+zx\right)\)
Áp dụng bất đẳng thức Cauchy-Schwarz, ta được:
\(\left(9x^3+3y^2+z\right)\left(\frac{1}{9x}+\frac{1}{3}+z\right)\ge\left(x+y+z\right)^2\)
\(\Rightarrow\frac{x}{9x^3+3y^2+z}\le\frac{x\left(\frac{1}{9x}+\frac{1}{3}+z\right)}{\left(x+y+z\right)^2}=\frac{\frac{1}{9}+\frac{x}{3}+zx}{\left(x+y+z\right)^2}\)(1)
Hoàn toàn tương tự, ta có: \(\frac{y}{9y^3+3z^2+x}\le\frac{\frac{1}{9}+\frac{y}{3}+xy}{\left(x+y+z\right)^2}\)(2); \(\frac{z}{9z^3+3x^2+y}\le\frac{\frac{1}{9}+\frac{z}{3}+yz}{\left(x+y+z\right)^2}\)(3)
Cộng theo vế của 3 bất đẳng thức (1), (2), (3), ta được:
\(\frac{x}{9x^3+3y^2+z}+\frac{y}{9y^3+3z^2+x}+\frac{z}{9z^3+3x^2+y}\)\(\le\frac{\frac{1}{9}.3+\frac{x+y+z}{3}+xy+yz+zx}{\left(x+y+z\right)^2}\)
\(\le\frac{\frac{1}{9}.3+\frac{x+y+z}{3}+\frac{\left(x+y+z\right)^2}{3}}{\left(x+y+z\right)^2}=1\)(*)
Mặt khác, có: \(2017\left(xy+yz+zx\right)\le2017.\frac{\left(x+y+z\right)^2}{3}=\frac{2017}{3}\)(**)
Từ (*) và (**) suy ra \(A=\frac{x}{9x^3+3y^2+z}+\frac{y}{9y^3+3z^2+x}+\frac{z}{9z^3+3x^2+y}+2017\left(xy+yz+zx\right)\)
\(\le1+\frac{2017}{3}=\frac{2020}{3}\)
Đẳng thức xảy ra khi \(x=y=z=\frac{1}{3}\)