Giải pt sau:
1,x+2/2002 +x+5/1999 +x+201/1803=-3
2,x+1/99 +x+3/97 +x+5/95=x+9/91 +x+8/92 +x+7/93.
Giải pt sau:
1,x+2/2002 +x+5/1999 +x+201/1803=-3
2,x+1/99 +x+3/97 +x+5/95=x+9/91 +x+8/92 +x+7/93.
\(\frac{x+2}{2002}+\frac{x+5}{1999}+\frac{x+201}{1803}=-3\)
\(\Leftrightarrow\frac{x+2}{2002}+1+\frac{x+5}{1999}+1+\frac{x+201}{1803}+1=-3+1+1+1\)
\(\Leftrightarrow\frac{x+2004}{2002}+\frac{x+2004}{1999}+\frac{x+2004}{1803}=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\right)=0\)
\(\Leftrightarrow x+2004=0\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\ne0\right)\)
<=> x=-2004
a,\(\frac{x+2}{2002}+\frac{x+5}{1999}+\frac{x+201}{1803}=-3\)
\(< =>\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+5}{1999}+1\right)+\left(\frac{x+201}{1803}+1\right)=0\)
\(< =>\frac{x+2004}{2002}+\frac{x+2004}{1999}+\frac{x+2004}{1803}=0\)
\(< =>\left(x+2004\right).\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\right)=0\)
Do \(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\ne0\)
\(=>x+2004=0\)
\(=>x=-2004\)
\(\frac{x+2}{2002}+\frac{x+5}{1999}+\frac{x+201}{1803}=-3\)
\(\Leftrightarrow\left(\frac{x+2}{2002}+1\right)+\left(\frac{x+5}{1999}+1\right)+\left(\frac{x+201}{1803}+1\right)=0\)
\(\Leftrightarrow\frac{x+2004}{2002}+\frac{x+2004}{1999}+\frac{x+2004}{1803}=0\)
\(\Leftrightarrow\left(x+2004\right)\left(\frac{1}{2002}+\frac{1}{1999}+\frac{1}{1803}\right)=0\)
\(\Leftrightarrow x=-2004\)
\(\frac{x+1}{99}+\frac{x+3}{97}+\frac{x+5}{95}=\frac{x+9}{91}+\frac{x+8}{92}+\frac{x+7}{93}\)
\(\Leftrightarrow\left(\frac{x+1}{99}+1\right)+\left(\frac{x+3}{97}+1\right)+\left(\frac{x+5}{95}+1\right)=\left(\frac{x+9}{91}+1\right)+\left(\frac{x+8}{92}+1\right)+\left(\frac{x+7}{93}+1\right)\)
\(\Leftrightarrow\frac{x+100}{99}+\frac{x+100}{97}+\frac{x+100}{95}=\frac{x+100}{91}+\frac{x+100}{92}+\frac{x+100}{93}\)
\(\Leftrightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{98}+\frac{1}{95}-\frac{1}{91}-\frac{1}{92}-\frac{1}{93}\right)=0\)
Để ý thấy cụm đằng sau < 0 nên x=-100
Giải các phương trình sau ;
a) x-4/96 + x-7/93 + x-8/92 + x-10/90 + x-15/85 = 5
b) x+3/97 + x+5/95 + x+9/91 = x+91/98 + x+92/93 + x+61/99
\(\dfrac{x+3}{97}+\dfrac{x+5}{95}+\dfrac{x+9}{91}=\dfrac{x+91}{9}+\dfrac{x+92}{8}+\dfrac{x+61}{39}\)
=> \(\dfrac{x+3}{97}+1+\dfrac{x+5}{95}+1+\dfrac{x+9}{91}+1=\dfrac{x+91}{9}+1+\dfrac{x+92}{8}+1+\dfrac{x+61}{39}+1\)
=> \(\dfrac{x+100}{97}+\dfrac{x+100}{95}+\dfrac{x+100}{91}=\dfrac{x+100}{9}+\dfrac{x+100}{8}+\dfrac{x+100}{39}\)
=> \(\dfrac{x+100}{97}+\dfrac{x+100}{95}+\dfrac{x+100}{91}-\dfrac{x+100}{9}-\dfrac{x+100}{8}-\dfrac{x+100}{39}=0\)
=> \(\left(x+100\right).\left(\dfrac{1}{97}+\dfrac{1}{95}+\dfrac{1}{91}-\dfrac{1}{9}-\dfrac{1}{8}-\dfrac{1}{39}\right)=0\)
=> x = - 100 (do \(\dfrac{1}{97}+\dfrac{1}{95}+\dfrac{1}{91}-\dfrac{1}{9}-\dfrac{1}{8}-\dfrac{1}{39}\ne0\)
Ta có: \(\dfrac{x+3}{97}+\dfrac{x+5}{95}+\dfrac{x+9}{91}=\dfrac{x+91}{9}+\dfrac{x+92}{8}+\dfrac{x+61}{39}\)
\(\Leftrightarrow\dfrac{x+3}{97}+1+\dfrac{x+5}{95}+1+\dfrac{x+9}{91}+1=\dfrac{x+91}{9}+1+\dfrac{x+92}{8}+1+\dfrac{x+61}{39}+1\)
\(\Leftrightarrow\dfrac{x+100}{97}+\dfrac{x+100}{95}+\dfrac{x+100}{91}=\dfrac{x+100}{9}+\dfrac{x+100}{8}+\dfrac{x+100}{39}\)
\(\Leftrightarrow\dfrac{x+100}{97}+\dfrac{x+100}{95}+\dfrac{x+100}{91}-\dfrac{x+100}{9}-\dfrac{x+100}{8}-\dfrac{x+100}{39}=0\)
\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{97}+\dfrac{1}{95}+\dfrac{1}{91}-\dfrac{1}{9}-\dfrac{1}{8}-\dfrac{1}{39}\right)=0\)
mà \(\dfrac{1}{97}+\dfrac{1}{95}+\dfrac{1}{91}-\dfrac{1}{9}-\dfrac{1}{8}-\dfrac{1}{39}\ne0\)
nên x+100=0
hay x=-100
Vậy: S={-100}
[(x+1)/99]+[(x+3)/97]+[(x+5)/95]= [(x+7)/93]+[(x+9)/91]+[(x+11)/89]
các bạn giúp mình với a. Mình cảm ơn trước
\(\frac{x+1}{99}+\frac{x+3}{97}+\frac{x+5}{95}=\frac{x+7}{93}+\frac{x+9}{91}+\frac{x+11}{89}\)
\(\Rightarrow\frac{x+1}{99}+1+\frac{x+3}{97}+1+\frac{x+5}{95}+1\)\(=\frac{x+7}{93}+1+\frac{x+9}{91}+1+\frac{x+11}{89}+1\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{97}+\frac{x+100}{95}\)\(=\frac{x+100}{93}+\frac{x+100}{91}+\frac{x+100}{89}\)
\(\Rightarrow\frac{x+100}{99}+\frac{x+100}{97}+\frac{x+100}{95}\)\(-\frac{x+100}{93}-\frac{x+100}{91}-\frac{x+100}{89}=0\)
\(\Rightarrow\left(x+100\right)\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}-\frac{1}{93}-\frac{1}{91}-\frac{1}{89}\right)=0\)
Mà \(\left(\frac{1}{99}< \frac{1}{97}< \frac{1}{95}< \frac{1}{93}< \frac{1}{91}< \frac{1}{89}\right)\)nên \(\left(\frac{1}{99}+\frac{1}{97}+\frac{1}{95}-\frac{1}{93}-\frac{1}{91}-\frac{1}{89}\right)< 0\)
\(\Rightarrow x+100=0\Leftrightarrow x=-100\)
Vậy x = -100
giải pt
\(\left(\dfrac{x-1}{99}+x-99\right)+\left(\dfrac{x-3}{97}+\dfrac{x-7}{93}\right)+\left(\dfrac{x-5}{95}+\dfrac{x-95}{5}\right)=6\)
\(\Leftrightarrow\left(\dfrac{x-1}{99}-1\right)+\left(\dfrac{x-99}{1}-1\right)+\left(\dfrac{x-3}{97}-1\right)+\left(\dfrac{x-7}{93}-1\right)+\left(\dfrac{x-5}{95}-1\right)+\left(\dfrac{x-95}{5}-1\right)=0\)=>x-100=0
hay x=100
giải PT: a, (4x-5)2 (2x-3)(x-1)=9
b,\(\frac{5}{x-8}+1=\frac{23}{x^2-5x-24}+\frac{2}{x+3}\)
c,(\(\left(\frac{x-1}{99}+\frac{x-99}{1}\right)+\left(\frac{x-3}{97}+\frac{x+97}{3}\right)+\left(\frac{x-5}{93}+\frac{x-95}{5}\right)=6\)
c, Trừ hai vế cho 6
Vế trái thì lấy từng số hạng trừ 1 là được
bài 2: giải các phương trình sau:
a. x -23/24 +x-23/25 = x -23/26 +x - 23/27
b. (x +2/98 +1) +(x +3/97 +1)=(x +4/96 +1) +(x +5/95 +1)
c. x+1/2004 + x+2/2003= x+3/2002 +x+4 /2001
d. 201 -x/99 + 203 -x/97 +205 -x/95 +3 =0
bài 1 : 101 x 125 + 101 x 25 - 101 x 50
bài 2 : 76 x 115 + 56 x 24 + 59 x 24
bài 3 : thực hiện phép tính : a ) 90-84+ 8 - 72 +66-60+54-48
b ) 99-97+95-93+91-89+.........+7-5+3-1
bài 4 : tìm số tự nhiên x biết :
a) \(x\) x 16 -\(x\) x 9 = 56
bài 5 :tìm số tự nhiên x , biết
a) \(x\) + 2 x \(x\) +3 x \(x\)+4 x \(x\) +5 x \(x\) = 165
b ) 1+2+3+4+.....+\(x\)=55
GIẢI GIÚP E Ạ
Bài 1:
\(101\cdot125+101\cdot25-101\cdot50\)
\(=101\cdot\left(125+25-50\right)\)
\(=101\cdot100\)
\(=10100\)
Bài 2:
\(76\cdot115+56\cdot24+59\cdot24\)
\(=76\cdot115+24\cdot\left(56+59\right)\)
\(=76\cdot115+24\cdot115\)
\(=115\cdot\left(76+24\right)\)
\(=115\cdot100\)
\(=11500\)
5:
a: =>15x=165
=>x=11
b: =>x(x+1)/2=55
=>x^2+x=110
=>x=10
4: =>7x=56
=>x=8
Bài 1:
101•125+101•25+101•50
= 101•(125+25-50)
=101•100
=10100
Bài 2:
76•115+56•24+59•24
= 76•115+24•(56+59)
= 76•115+24•115
= 115•(76+24)
= 115•100
= 11500
Giải phương trình sau:
a) x+1/2004 + x+2/2003 = x+3/2002 + x+4/2001
b) 201-x/99 + 203-x/97 + 205-x/95 + 3 = 0
a) \(\dfrac{x+1}{2004}+\dfrac{x+2}{2003}=\dfrac{x+3}{2002}+\dfrac{x+4}{2001}\)
⇔ \(\dfrac{x+1}{2004}+1+\dfrac{x+2}{2003}+1=\dfrac{x+3}{2002}+1+\dfrac{x+4}{2001}+1\)
⇔ \(\dfrac{x+2005}{2004}+\dfrac{x+2005}{2003}=\dfrac{x+2005}{2002}+\dfrac{x+2005}{2001}\)
⇔ \(\left(x+2005\right)\left(\dfrac{1}{2004}+\dfrac{1}{2003}-\dfrac{1}{2002}-\dfrac{1}{2001}\right)\)=0
Vì\(\left(\dfrac{1}{2004}+\dfrac{1}{2003}-\dfrac{1}{2002}-\dfrac{1}{2001}\right)\)<0 nên phương trinh đã cho tương đương:
x+2005=0 ⇔x=-2005
b) \(\dfrac{201-x}{99}+\dfrac{203-x}{97}+\dfrac{205-x}{95}+3=0\)
⇔ \(\dfrac{201-x}{99}+1+\dfrac{203-x}{97}+1+\dfrac{205-x}{95}+1=0\)
⇔ \(\dfrac{300-x}{99}+\dfrac{300-x}{97}+\dfrac{300-x}{95}=0\)
⇔ \(\left(300-x\right)\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)=0\)
Vì \(\left(\dfrac{1}{99}+\dfrac{1}{97}+\dfrac{1}{95}\right)>0\) nên phương trình đã cho tương đương:
300-x=0 ⇔ x=300