GIẢI PHƯƠNG TRÌNH NGHIỆM NGUYÊN
x^2-4xy+12y^2=24
MONG CÁC BẠN GIÚP
giúp mình với nhé, gấp lắm !!!
Bài 1: Giải phương trình
x^2-3x+5 / x^2-4x+5 + x^2-5x+5 / x^2-6x+5 = -1/4
Bài 2: Tìm GTNN của các biểu thức sau
a) B = x^2+3x b) C = (x+1)(x+2)(x+3)(x+4)
c) D = 5x^2 - 4xy + 4y^2 + 2x - 12y
Bài 3: giải phương trình nghiệm nguyên
8x^2 + 6xy +y^2 - 5 = 0
Bài 2 ;
Ta có : x2 + 3x
= x2 + 3x + \(\frac{9}{4}-\frac{9}{4}\)
= \(x^2+2.x.\frac{3}{2}+\left(\frac{3}{2}\right)^2-\frac{9}{4}\)
\(=\left(x+\frac{3}{2}\right)^2-\frac{9}{4}\)
Mà ; \(\left(x+\frac{3}{2}\right)^2\ge\forall x\)
Nên : \(\left(x+\frac{3}{2}\right)^2-\frac{9}{4}\ge-\frac{9}{4}\forall x\)
Vậy GTNN của B là : \(-\frac{9}{4}\) khi và chỉ khi x = \(-\frac{3}{2}\)
a) (3x - 2)(4x + 5) = 0
⇔ 3x - 2 = 0 hoặc 4x + 5 = 0
1) 3x - 2 = 0 ⇔ 3x = 2 ⇔ x = 2/3
2) 4x + 5 = 0 ⇔ 4x = -5 ⇔ x = -5/4
Vậy phương trình có tập nghiệm S = {2/3;−5/4}
b) (2,3x - 6,9)(0,1x + 2) = 0
⇔ 2,3x - 6,9 = 0 hoặc 0,1x + 2 = 0
1) 2,3x - 6,9 = 0 ⇔ 2,3x = 6,9 ⇔ x = 3
2) 0,1x + 2 = 0 ⇔ 0,1x = -2 ⇔ x = -20.
Vậy phương trình có tập hợp nghiệm S = {3;-20}
c) (4x + 2)(x2 + 1) = 0 ⇔ 4x + 2 = 0 hoặc x2 + 1 = 0
1) 4x + 2 = 0 ⇔ 4x = -2 ⇔ x = −1/2
2) x2 + 1 = 0 ⇔ x2 = -1 (vô lí vì x2 ≥ 0)
Vậy phương trình có tập hợp nghiệm S = {−1/2}
d) (2x + 7)(x - 5)(5x + 1) = 0
⇔ 2x + 7 = 0 hoặc x - 5 = 0 hoặc 5x + 1 = 0
1) 2x + 7 = 0 ⇔ 2x = -7 ⇔ x = −7/2
2) x - 5 = 0 ⇔ x = 5
3) 5x + 1 = 0 ⇔ 5x = -1 ⇔ x = −1/5
Vậy phương trình có tập nghiệm là S = {−7/2;5;−1/5}
Chứng minh rằng phương trình sau không có nghiệm nguyên:
\(x^5+3x^4y-5x^3y^2-15x^2y^3+4xy^4+12y^5=33\)
VT sẽ được phân tích thành
\(\left(y-x\right)\left(y+x\right)\left(2y-x\right)\left(2y+x\right)\left(3y+x\right)=33\)
Nếu x,y là các số nguyên =>VT là tích của 5 số nguyên, mà 33 chỉ là tích của nhiều nhất là 4 số nguyên => vô lí=> PT k có nghiệm nguyên
^_^
Giải phương trình nghiệm nguyên: \(x^2-4xy+5y^2-16=0\)
\(x^2-4xy+5y^2-16=0\)
\(\Leftrightarrow\left(x-2y\right)^2+y^2=16\)
Ta xét các TH:
TH1: \(\left\{{}\begin{matrix}x-2y=0\\y=4\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=8\\y=4\end{matrix}\right.\)
TH2: \(\left\{{}\begin{matrix}x-2y=4\\y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=0\end{matrix}\right.\)
Vậy ta tìm được cặp số (x; y) là \(\left(8;4\right);\left(4;0\right)\)
Giải phương trình nghiệm nguyên : \(x^2y^2-x^2-7y^2=4xy\)
\(x^2y^2-x^2-7y^2=4xy\)
\(\Leftrightarrow x^2+4xy+4y^2=x^2y^2-3y^2\)
\(\Leftrightarrow\left(x+2y\right)^2=y^2\left(x^2-3\right)\)
\(\Rightarrow x^2-3=n^2\)
\(\Leftrightarrow\left(x-n\right)\left(x+n\right)=3\)
\(x^2y^2-x^2-7y^2=4xy\)
\(\Leftrightarrow x^2+4xy+4y^2=x^2y^2-3y^2\)
\(\Leftrightarrow\left(x+2y\right)^2=y^2\left(x^2-3\right)\)
\(\Leftrightarrow x^2-3=y^2\)
\(\Leftrightarrow x^2-y^2=3\Leftrightarrow\left(x+y\right)\left(x-y\right)=3\)
Từ đó suy ra phương trình có nghiệm duy nhất: \(\hept{\begin{cases}x=2\\y=1\end{cases}}\)(loại vì nếu thử lại VT = -7 , mà VP = 4xy=4.2.1 = 8 . VT không bằng VP nên phương trình vô nghiệm
x2y2−3y2=x2+4y2+4xy⇔y2(x2−3)=(x+2y)2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
y2" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml"> là số chính phương , nên là số chính phương
x2−3=a2⇔x2−a2=3⇔(x−a)(x+a)=3" role="presentation" style="border:0px; direction:ltr; display:inline-block; float:none; font-size:16.38px; line-height:0; margin:0px; max-height:none; max-width:none; min-height:0px; min-width:0px; padding:1px 0px; position:relative; white-space:nowrap; word-spacing:normal; word-wrap:normal" class="MathJax_CHTML mjx-chtml">
đến đây bạn lập bảng ước ra là được
giải phương trình nghiệm nguyên\(x^2-4xy+5y^2-16=0\)
Ta có : \(x^2-4xy+5y^2-16=0\)
\(\Leftrightarrow\left(x^2-4xy+4y^2\right)+\left(y^2-16\right)=0\)
\(\Leftrightarrow\left(x-2y\right)^2+\left(y-4\right)^2=0\)
Mà \(\left(x-2y\right)^2\ge0\forall x:y\)
\(\left(y-4\right)^2\ge0\forall y\)
Dấu " = " xảy ra khi :
\(\orbr{\begin{cases}x-2y=0\\y-4=0\end{cases}\Leftrightarrow\orbr{\begin{cases}x=2y\\y=4\end{cases}}}\Leftrightarrow\orbr{\begin{cases}x=8\\y=4\end{cases}}\)
Vậy \(\left(x;y\right)=\left(8;4\right)\)
tìm nghiệm nguyên của phương trình x^2-12y^2+xy-x+3y+5=0
\(x^2-12y^2+xy-x+3y+5=0\)
\(\Leftrightarrow x^2+x\left(y-1\right)+\left(3y-12y^2+5\right)=0\)
Xét \(\Delta=\left(y-1\right)^2-4.1.\left(3y-12y^2+5\right)=49y^2-14y-19=\left(7y-1\right)^2-20\ge0\)
Để x nhận giá trị nguyên thì \(\Delta\) là số chính phương.
Suy ra \(\left(7y-1\right)^2-20=k^2\Leftrightarrow\left(7y-k-1\right)\left(7y+k+1\right)=20\)
Xét các trường hợp được y = 1 thỏa mãn.
Khi đó ta suy ra \(x=2\) hoặc \(x=-2\)
Vậy (x;y) = (-2;1) ; (2;1)
Giải phương trình nghiệm nguyên không âm: \(\left(1+x^2\right)\left(1+y^2\right)+4xy+2\left(x+y\right)\left(1+xy\right)=25\)
(1+x2)(1+y2)+4xy+2(x+y)(1+xy)=25(1+x2)(1+y2)+4xy+2(x+y)(1+xy)=25
↔x2+2xy+y2+x2y2+2xy.1+1+2(x+y)(1+xy)−25=0x2+2xy+y2+x2y2+2xy.1+1+2(x+y)(1+xy)−25=0
↔(x+y)2+2(x+y)(1+xy)+(1+xy)2−25=0(x+y)2+2(x+y)(1+xy)+(1+xy)2−25=0
↔(x+y+1+xy+5)(x+y+1+xy−5)=0(x+y+1+xy+5)(x+y+1+xy−5)=0→[x+y+xy=−6x+y+xy=4[x+y+xy=−6x+y+xy=4
Nếu x+y+xy=-6→(x+1)(y+1)=-5(vì x,yϵ z nên x+1,y+1ϵ z)
ta có bảng:
x+1 1 5 -1 -5
y+1 -5 -1 5 1
x 0 4 -2 -6
y -6 -2 4 0
→(x,y)ϵ{(0;−6),(4;−2)...}
\(\left(1+x^2\right)\left(1+y^2+4xy\right)+2\left(x+y\right)\left(1+xy\right)=25\)
\(\Leftrightarrow\) \(x^2+2xy+y^2+x^2y^2+2xy.1+1+2\left(x+y\right)\left(1+xy\right)-25=0\)
\(\Leftrightarrow\) \(\left(x+y\right)^2+2\left(x+y\right)\left(1+xy\right)+\left(1+xy\right)^2-25=0\)
\(\Leftrightarrow\) \(\left(x+y+1+xy+5\right)\left(x+y+1+xy-5\right)=0\) \(\Rightarrow\) \(\left\{{}\begin{matrix}x+y+xy=-6\\x+y+xy=4\end{matrix}\right.\)
nếu \(x+y+xy=-6\Rightarrow\left(x+1\right)\left(y+1\right)=-5\)
( vì \(x,y\in Z\) nên \(x+1;y+1\in Z\) )
ta lập bảng :
| \(x+1\) | \(1\) | \(5\) | \(-1\) | \(-5\) |
| \(y+1\) | \(-5\) | \(-1\) | \(5\) | \(1\) |
| \(x\) | \(0\) | \(4\) | \(-2\) | \(-6\) |
| \(y\) | \(-6\) | \(-2\) | \(4\) | \(0\) |
\(\Rightarrow\) \(x;y\in\left\{\left(0,6\right);\left(4,-2\right);\left(-2,4\right);\left(-6,0\right)\right\}\)
Giải phương trình nghiệm nguyên : x2+2y2+3xy+3x+5y=15
Mong các bạn giúp đỡ!
Giải phương trình nghiệm nguyên x^2y+4xy+4y = 162x+162y