Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Trang
Xem chi tiết
nguyễn thế an
Xem chi tiết
Uzumaki Naruto
Xem chi tiết
pham trung thanh
13 tháng 12 2017 lúc 21:00

\(\frac{a}{ac+a+1}+\frac{b}{bc+b+1}+\frac{c}{ca+c+1}\)

\(=\frac{a}{ac+a+abc}+\frac{b}{bc+b+1}+\frac{bc}{abc+bc+b}\)

\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)

\(=\frac{bc+b+1}{bc+b+1}\)

\(=1\)

Sakuraba Laura
12 tháng 1 2019 lúc 21:21

Ta có: 

\(N=\frac{a}{ab+a+1}+\frac{b}{bc+b+1}+\frac{c}{ac+c+1}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{abc+ab+a}+\frac{c}{ac+c+abc}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{c}{c\left(a+1+ab\right)}\)

\(=\frac{a}{ab+a+1}+\frac{ab}{1+ab+a}+\frac{1}{a+1+ab}\)

\(=\frac{a+ab+1}{ab+a+1}=1\)

Vậy N = 1

Nguyễn Thùy Trang
12 tháng 8 2021 lúc 21:03

KQ:1 nha bn

Khách vãng lai đã xóa
Kingdom Rush
Xem chi tiết
yl
Xem chi tiết
Ngô Huy Hiếu
3 tháng 10 2018 lúc 21:58

      \(\frac{a}{ab}+a+1+\frac{b}{bc}+b+1+\frac{c}{ca}+c+1\)

\(=\frac{1}{b}+a+1+\frac{1}{c}+b+1+\frac{1}{c}+c+1\)

\(=3+a+b+c+\frac{1}{a}+\frac{1}{c}+\frac{1}{b}\)

\(=3+\frac{a^2+1}{a}+\frac{b^2+1}{b}+\frac{c^2+1}{c}\)

\(...............................................................\)

Kingdom Rush
Xem chi tiết
Đinh Đức Hùng
1 tháng 2 2017 lúc 9:45

\(A=\frac{a}{ab+a+2}+\frac{b}{bc+b+1}+\frac{2c}{ac+2c+2}\)

\(=\frac{a}{ab+a+abc}+\frac{b}{bc+b+1}+\frac{abc^2}{ac+abc^2+abc}\)

\(=\frac{a}{a\left(bc+b+1\right)}+\frac{b}{bc+b+1}+\frac{abc^2}{ac\left(bc+b+1\right)}\)

\(=\frac{1}{bc+b+1}+\frac{b}{bc+b+1}+\frac{bc}{bc+b+1}\)

\(=\frac{bc+b+1}{bc+b+1}=1\)

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
3 tháng 4 2017 lúc 17:19

Vũ Linh Chi
Xem chi tiết
Tuan le anh
1 tháng 8 2019 lúc 20:02

phân tích thôi mà  qua facebook BnoHi mình chỉ 

Phan Anhh
Xem chi tiết
Akai Haruma
23 tháng 11 2018 lúc 0:03

Lời giải:

Vì $a+b+c=1$ nên:

\(a^2+b^2+abc-1=(a+b)^2-2ab+abc-1\)

\(=(a+b)^2-1+ab(c-2)=(1-c)^2-1+ab(c-2)\)

\(=-c(2-c)+ab(c-2)=c(c-2)+ab(c-2)=(c+ab)(c-2)\)

Do đó:

\(\frac{c+ab}{a^2+b^2+abc-1}=\frac{c+ab}{(c+ab)(c-2)}=\frac{1}{c-2}\)

Hoàn toàn tương tự với các phân thức còn lại, suy ra:

\(\frac{c+ab}{a^2+b^2+abc-1}+\frac{a+bc}{b^2+c^2+abc-1}+\frac{b+ac}{a^2+c^2+abc-1}=\frac{1}{c-2}+\frac{1}{a-2}+\frac{1}{b-2}=\frac{(a-2)(b-2)+(b-2)(c-2)+(c-2)(a-2)}{(a-2)(b-2)(c-2)}\)

\(=\frac{ab+bc+ac-4(a+b+c)+12}{(a-2)(b-2)(c-2)}=\frac{ab+bc+ac+8}{(a-2)(b-2)(c-2)}\)

Ta có đpcm.

Phan Anhh
22 tháng 11 2018 lúc 17:02