Cho tam giác ABC vuông tại A, có B=60 độ và AB=5cm. tia phân giác của góc B cắt AC tại D. kẻ DE vuông góc với BC tại E.
a, chứng minh tam giác ABD = tam giác EBD.
b, Chứng minh▲ABE là tam giác đều
c, tính độ dài cạnh BC
help me pls
Cho tam giác ABC vuông tại A, có B=60° và AB = 5cm. Tia phân giác của góc B cắt AC tại D . Kẻ DE vuông góc với BC (EeBC) a. Chứng minh tam giác ABD= tam giác EBD b). Chứng minh tam giác ABE là tam giác đều c). Chứng minh tam giác AEC cân d). Chứng minh độ dài cạnh AC a. Chứng minh: ABD = EBD. b. Chứng minh: ABE là tam giác đều. c. Tính độ dài cạnh BC. d. Trên tia đối của tia AB lấy điiểm M sao cho AM = AB. Chứng minh : E,M,D thẳng hàng
Cho tam giác ABC vuông tại A, có góc B = 60 độ và AB = 5cm . Tia phân giác góc B cắt AC tại D . kẻ DE vuông góc với BC tại E
a) Chứng Minh : tam giác ABD = tam giác EBD
b)Chứng minh : tam giác ABE là tam giác đều
c)Tính độ dài cạnh BC
a) Tam giác ABD vuông và tam giác EBD vuông đều có cạnh BD
Suy ra góc ABD = góc EBD
Vậy tam giác ABD = tam giác EBD
b) Ta có: AB=EB ( tam giác ABD = tam giác EBD )
Suy ra tam giác ABE cân tại B
Tam giác ABE cân tại B có góc EBA =60 độ
Suy ra tam giác ABE là tam giác đều
c) Tam giác ABC có góc CAB = 90 độ, góc CBA = 60 độ
Suy ra ACB = 30 độ
Suy ra tam giác ABC là nửa tam giác đều
Suy ra AB = 1/2 BC
Suy ra BC = 2AB = 2 . 5 = 10 cm
Cho tam giác ABC vuông tại A, có góc B = 60 độ và AB = 5cm . Tia phân giác góc B cắt AC tại D . kẻ DE vuông góc với BC tại E
a) Chứng Minh : tam giác ABD = tam giác EBD
b)Chứng minh : tam giác ABE là tam giác đều
c)Tính độ dài cạnh BC
Vẽ xấu nhưng xem tạm thôi nhé!
a)Xét \(\Delta\)ABD (\(\widehat{A}=90^0\) )và \(\Delta\)EBD (\(\widehat{E}=90^0\))
Ta có:BD là cạnh chung (1)
\(\widehat{ABD}=\widehat{EBD}\) (gt) (2)
Từ (1) và (2) ==>\(\Delta ABD=\Delta EBD\) (CH+GN)
b)..............hình như tôi ko bt nx ^^
Hình bn Hoa vẽ rồi !! mk k vẽ lại nữa
a ) Phương Hoa lm rồi
b) Vì tam giác ABD = tam giác EBD ( câu a )
=> AB = EB ( cặp cạnh tượng ứng )
=> tam giác ABE cân (1)
Mà góc ABE = 60 độ (2)
Từ (1) và (2) => tam giác ABE đều ( điều phải chứng minh )
c) Xét tam giác ABK và tam giác EBK có :
BD : cạnh chung
AB = BE ( vì tam giác ABE đều )
góc ABK = góc EBK = 30 độ ( vì BK là phân giác )
=> tam giác ABK = tam giác EBK ( c-g-c )
=> AK = EK ( cặp cạnh tương ứng )
Mà tam giác ABE đều => AB = EB = AE
=> AB = EB = AE = 5cm
mà AK + EK = AE
=> AK = AE = 2,5 cm
Mà AK = EC
=> AK = EC = 2,5cm
Vì BE + CE = BC
=> 5 + 2,5 = BC
=> BC = 7,5 cm
Chúc bn học tốt !!!
Câu 8: Cho tam giác ABC vuông tại A, có và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
a/ Chứng minh: ABD = EBD.
b/ Chứng minh: ABE là tam giác đều.
c/ Tính độ dài cạnh BC.
a: Xét ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
b: ΔBAD=ΔBED
=>BA=BE
Xét ΔBAE có BA=BE và góc ABE=60 độ
nên ΔBAE đều
c; Xét ΔABC vuông tại A có cos B=AB/BC
=>5/BC=1/2
=>BC=10cm
Cho tam giác ABC vuông tại A, có góc B = 60 độ và AB = 5cm . Tia phân giác góc B cắt AC tại D . kẻ DE vuông góc với BC tại E
a) Chứng Minh : tam giác ABD = tam giác EBD
b)Chứng minh : tam giác ABE là tam giác đều
c)Tính độ dài cạnh BC
d) Tính độ dài cạnh DE
a) Tam giác ABD vuông và tam giác EBD vuông đều có cạnh BD
Suy ra góc ABD = góc EBD
Vậy tam giác ABD = tam giác EBD
b) Ta có: AB=EB ( tam giác ABD = tam giác EBD )
Suy ra tam giác ABE cân tại B
Tam giác ABE cân tại B có góc EBA =60 độ
Suy ra tam giác ABE là tam giác đều
c) Tam giác ABC có góc CAB = 90 độ, góc CBA = 60 độ
Suy ra ACB = 30 độ
Suy ra tam giác ABC là nửa tam giác đều
Suy ra AB = 1/2 BC
Suy ra BC = 2AB = 2 . 5 = 10 cm
chúc bạn học tốt!
Cho tam giác ABC vuông tại A, có và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
1/ Chứng minh: ABD = EBD.
2/ Chứng minh: ABE là tam giác đều.
3/ Tính độ dài cạnh BC.
1: Xét ΔABD vuông tại A và ΔEBD vuông tại E có
BD chung
\(\widehat{ABD}=\widehat{EBD}\)
Do đó: ΔABD=ΔEBD
2: Ta có: ΔABD=ΔEBD
nên BA=BE
hay ΔABE cân tại B
mà \(\widehat{ABE}=60^0\)
nên ΔABE đều
3: Xét ΔABC vuông tại A có
\(\cos B=\dfrac{AB}{BC}=\dfrac{5}{BC}\)
=>BC=10(cm)
1/ Chứng minh: ΔΔABD = ΔΔEBD
Xét ΔΔABD và ΔΔEBD, có:
ˆBAD=ˆBED=900BAD^=BED^=900
BD là cạnh huyền chung
ˆABD=ˆEBDABD^=EBD^ (gt)
Vậy ΔΔABD = ΔΔEBD (cạnh huyền – góc nhọn)
2/ Chứng minh:ΔΔABE là tam giác đều.
ΔΔABD =ΔΔEBD (cmt)
=> AB = BE
mà ˆB=600B^=600 (gt)
Vậy ΔΔABE có AB = BE và nên ΔΔABE đều.
3/ Tính độ dài cạnh BC
Ta có : Trong ΔΔ ABC vuông tại A có ˆA+ˆB+ˆC=1800A^+B^+C^=1800
mà ˆA=900;ˆB=600(gt)A^=900;B^=600(gt) => ˆC=300C^=300
Ta có : ˆBAC+ˆEAC=900BAC^+EAC^=900 (ΔΔABC vuông tại A)
Mà ˆBAE=600BAE^=600(ΔΔABE đều) nên ˆEAC=300EAC^=300
Xét ΔΔEAC có ˆEAC=300EAC^=300 và ˆC=300C^=300 nên ΔΔEAC cân tại E
=> EA = EC mà EA = AB = EB = 5cm
Do đó EC = 5cm
Vậy BC = EB + EC = 5cm + 5cm = 10cm
Cho tam giác ABC vuông tại A có góc B=60 độ ,AB=5cm,tia phân giác của góc B cắt AC tại D , kẻ DE vuông góc với BC tại E
a/ Chứng minh: tam giác ABD=EBD
b/Chứng minh: tam giác ABE đều
c/ tính độ dài BC
Mình không biết có đúng hay không nha?!
Theo mình thì: a) Tam giác ABD (góc A=90 độ) và tam giác BDE (góc E=90 độ) có: góc ABD = góc DBE (gt) BD chung\(\Rightarrow\)tam giac ABD= tam giác BDE(cạnh huyền-góc nhọn)
b) Ta có:AD=DE(tam giác ... = tam giác...)
tam giác ADE cân Ta có: góc D =120 độ ( góc D= 180 độ -(góc A + góc B)=60 độ...) góc A=góc E=(180 độ - góc D)/2=30 độ Góc BEA = 90 độ -30 độ = 60 độ => tam giác BEA đều. Chỗ nào sai sót hay bạn thắc mắc thì ghi lại nhé!
Cho tam giác ABC vuông tại A có góc B=60 độ ,AB=5cm,tia phân giác của góc B cắt AC tại D , kẻ DE vuông góc với BC tại E
a/ Chứng minh: tam giác ABD=EBD
b/Chứng minh: tam giác ABE đều
c/ tính độ dài BC
a) tam giác ABD vuông và tam giác EBD vuông có BD=BD,góc ABD=góc EBD
=> tam giác ABD=tam giác EBD (ch-gn)
b) ta có AB=EB (tam giác ABD=tam giác EBD)
=> tam giác ABE cân tại B
tam giác ABE cân tại B có góc EBA=60 độ
=> tam giác ABE đều
c) tam giác ABC có góc CAB=90 độ,góc CBA=60 độ
=> góc ACB=30 độ
=> tam giác ABC là nửa tam giác đều
=> AB =1/2 BC=> BC=2AB=2.5=10 cm
Cho tam giác ABC vuông tại A có góc B=60 độ ,AB=5cm,tia phân giác của góc B cắt AC tại D , kẻ DE vuông góc với BC tại E
a/ Chứng minh: tam giác ABD=EBD
b/Chứng minh: tam giác ABE đều
c/ tính độ dài BC
a) Tam giác ABD (góc A=90 độ) và tam giác BDE (góc E=90 độ) có:
góc ABD = góc DBE (gt)
BD chung
tam giac ABD= tam giác BDE(cạnh huyền-góc nhọn)
b) Ta có:AD=DE(tam giác ... = tam giác...)
tam giác ADE cân
Ta có: góc D =120 độ ( góc D= 180 độ -(góc A + góc B)=60 độ...)
góc A=góc E=(180 độ - góc D)/2=30 độ
Góc BEA = 90 độ -30 độ = 60 độ => tam giác BEA đều.
c.xét tam giác ABC có : cosABC=AB/BC
=> BC=AB/cosABC => BC=5/cos60=? ( tại mình ko có máy tính
Cho tam giác ABC vuông tại A, có góc B bằng 60 độ và AB=5cm Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.
1. Chứng minh tam giác ABD bằng tam giác EBD
2. Chứng minh tam giác ABE là tam giác đều
3. Tính độ dài BC