Luyện tập tổng hợp

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
daophanminhtrung

Cho tam giác ABC vuông tại A, có và AB = 5cm. Tia phân giác của góc B cắt AC tại D. Kẻ DE vuông góc với BC tại E.

                  1/ Chứng minh: ABD = EBD.

                  2/ Chứng minh: ABE là tam giác đều.

                  3/ Tính độ dài cạnh BC.

Nguyễn Lê Phước Thịnh
19 tháng 2 2022 lúc 21:35

1: Xét ΔABD vuông tại A và ΔEBD vuông tại E có

BD chung

\(\widehat{ABD}=\widehat{EBD}\)

Do đó: ΔABD=ΔEBD

2: Ta có: ΔABD=ΔEBD

nên BA=BE

hay ΔABE cân tại B

mà \(\widehat{ABE}=60^0\)

nên ΔABE đều

3: Xét ΔABC vuông tại A có 

\(\cos B=\dfrac{AB}{BC}=\dfrac{5}{BC}\)

=>BC=10(cm)

phốt đuỹ bẹn tên Công Mi...
19 tháng 2 2022 lúc 21:36

1/ Chứng minh: ΔΔABD = ΔΔEBD

Xét  ΔΔABD và ΔΔEBD, có:

            ˆBAD=ˆBED=900BAD^=BED^=900

            BD là cạnh huyền chung

            ˆABD=ˆEBDABD^=EBD^ (gt)

Vậy ΔΔABD = ΔΔEBD  (cạnh huyền – góc nhọn)

2/ Chứng minh:ΔΔABE là tam giác đều.

ΔΔABD =ΔΔEBD (cmt)

=> AB = BE

mà  ˆB=600B^=600  (gt)

Vậy  ΔΔABE có  AB = BE và   nên  ΔΔABE đều.

3/  Tính độ dài cạnh BC

Ta có :  Trong ΔΔ ABC vuông tại A có ˆA+ˆB+ˆC=1800A^+B^+C^=1800 

               mà ˆA=900;ˆB=600(gt)A^=900;B^=600(gt)  => ˆC=300C^=300

 Ta có  :  ˆBAC+ˆEAC=900BAC^+EAC^=900 (ΔΔABC vuông tại A)

                Mà ˆBAE=600BAE^=600(ΔΔABE đều)  nên ˆEAC=300EAC^=300

Xét ΔΔEAC có ˆEAC=300EAC^=300 và ˆC=300C^=300 nên ΔΔEAC cân tại E

            => EA = EC mà EA = AB = EB = 5cm

Do đó EC = 5cm

Vậy BC = EB + EC = 5cm + 5cm = 10cm


Các câu hỏi tương tự
Nguyễn Trần Duy Thiệu
Xem chi tiết