tim max hoac min cua x^2-2*x+y^2-4*y+16
cho cac so x,y thoa man:x2+y2=16+xy. tim min;max cua P=x2+y2
x^2+y^2=16+xy=>2x^2+2y^2=32+2xy
=>x^2+y^2=32+2xy-x^2-y^2=32-(x^2-2xy+y^2)=32-(x-y)^2 </ 32 với mọi x,y
maxP=32
cho x,y thoa man: x^2+y^2= x+y .tim MIN ,MAX cua B=x-y
Bạn kham khảo tại link:
tìm Min ( x^2 + y^2 ) / xy đk x>= 2y; x,y dương? | Yahoo Hỏi & Đáp
Tìm Min:
\(x=x^2+y^2-y\)
\(\Rightarrow B=\left(x^2+y^2-y\right)-y=x^2+\left(y^2-2y+1\right)-1=x^2+\left(y-1\right)^2-1\ge-1\)
Tìm Max:
\(y=x^2+y^2-x\)
\(\Rightarrow B=x-\left(x^2+y^2-x\right)=-y^2-\left(x^2-2x+1\right)+1=-y^2-\left(x-1\right)^2+1\le1\)
1)Tim MAX cua A= (6x^2-2x+1)/ x^2
2)tim MIN va MAX C= (3-4x)/(X^2+1)
3) Tim MIN va MAX P = x^2+y^2
biet giua x va y co moi quan he nhu sau : 5x^2+8xy+5y^2=36
4)tim MAX Q = -x^2-y^2+xy+2x+2y
cho 0 <= x,y <=1 va x+y=3xy. tim min, max cua P= x^2 + y^2 -4xy
cho 3x^2+2y^2+2z^2+2yz=2018. tim min, max cua S=x+y+z
Tim min, max cua:
\(A=\frac{x^2+y^2}{x^2+2xy+y^2}\)
\(B=\frac{x^2}{x^4+1}\)
\(C=(x^2+\frac{1}{y^2})(y^2+\frac{1}{x^2})\)
Tim min và max cua B=x+y+z Biet y2+yz+z2=(1-3x2)/2
Tim min hoac max neu co :
-x^2+2x+2xy-4y^2-10y-3
Lời giải:
$A=-x^2+2x+2xy-4y^2-10y-3$
$-A=x^2-2x-2xy+4y^2+10y+3$
$=(x^2-2xy+y^2)+3y^2-2x+10y+3$
$=(x-y)^2-2(x-y)+1+(3y^2+8y+\frac{16}{3})-\frac{10}{3}$
$=(x-y-1)^2+3(y+\frac{4}{3})^2-\frac{10}{3}\geq 0+3.0-\frac{10}{3}=\frac{-10}{3}$
$\Rightarrow A\leq \frac{10}{3}$
Vậy $A_{\max}=\frac{10}{3}$
Giá trị này đạt tại $x-y-1=y+\frac{4}{3}$
$\Leftrightarrow (x,y)=(\frac{-1}{3}, \frac{-4}{3})$
cho x, y\(\in R\)thoa man \(\left(X+\sqrt{x^2+1}\right)\left(y+\sqrt{y^2+1}\right)=1\)
Tim min, max cua M=\(10x^4+8y^4-15xy+6x^2+5y^2+2017\)