Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Seria Chang
Xem chi tiết
Xuyen Phan
Xem chi tiết
Nguyễn Huy Tú
20 tháng 7 2021 lúc 18:36

a, \(A=-x^2-2x+3=-\left(x^2+2x-3\right)=-\left(x^2+2x+1-4\right)\)

\(=-\left(x+1\right)^2+4\le4\)

Dấu ''='' xảy ra khi x = -1 

Vậy GTLN là 4 khi x = -1 

b, \(B=-4x^2+4x-3=-\left(4x^2-4x+3\right)=-\left(4x^2-4x+1+2\right)\)

\(=-\left(2x-1\right)^2-2\le-2\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy GTLN B là -2 khi x = 1/2 

c, \(C=-x^2+6x-15=-\left(x^2-2x+15\right)=-\left(x^2-2x+1+14\right)\)

\(=-\left(x-1\right)^2-14\le-14\)

Vâỵ GTLN C là -14 khi x = 1

Bài 8 : 

b, \(B=x^2-6x+11=x^2-6x+9+2=\left(x-3\right)^2+2\ge2\)

Dấu ''='' xảy ra khi x = 3

Vậy GTNN B là 2 khi x = 3 

c, \(x^2-x+1=x^2-x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu ''='' xảy ra khi x = 1/2 

Vậy ...

c, \(x^2-12x+2=x^2-12x+36-34=\left(x-6\right)^2-34\ge-34\)

Dấu ''='' xảy ra khi x = 6

Vậy ...

Nguyễn Bảo Châu
Xem chi tiết
Thảo
24 tháng 9 2018 lúc 21:04

ta có gtnn của biểu thức là -3

사랑해 @nhunhope94
24 tháng 9 2018 lúc 21:06

tách ra hằng đẳng thức thứ...-2^3-2^3 -1 

= ( x+2 ) ^ 3 -9 còn lại tự nha

Việt Hoàng ( Tiếng Anh +...
24 tháng 9 2018 lúc 21:11

B=x+6x^2+12x+8-9

  =(x+2)^2-9

Vì(x+2)^2\(\ge\)0=>(x+2)^2-9\(\ge\)-9

Dấu = xảy ra <=>x+2=0

                     <=>x=-2

Vậy MinB=-9<=>x=-2

Nguyễn Bảo Châu
Xem chi tiết
Nguyễn Hải Đăng
Xem chi tiết
l҉o҉n҉g҉ d҉z҉
16 tháng 9 2020 lúc 14:59

a) A = x2 + 12x + 39

= ( x2 + 12x + 36 ) + 3

= ( x + 6 )2 + 3 ≥ 3 ∀ x

Đẳng thức xảy ra ⇔ x + 6 = 0 => x = -6

=> MinA = 3 ⇔ x = -6

B = 9x2 - 12x 

= 9( x2 - 4/3x + 4/9 ) - 4

= 9( x - 2/3 )2 - 4 ≥ -4 ∀ x

Đẳng thức xảy ra ⇔ x - 2/3 = 0 => x = 2/3

=> MinB = -4 ⇔ x = 2/3

b) C = 4x - x2 + 1

= -( x2 - 4x + 4 ) + 5

= -( x - 2 )2 + 5 ≤ 5 ∀ x

Đẳng thức xảy ra ⇔ x - 2 = 0 => x = 2

=> MaxC = 5 ⇔ x = 2

D = -4x2 + 4x - 3

= -( 4x2 - 4x + 1 ) - 2

= -( 2x - 1 )2 - 2 ≤ -2 ∀ x

Đẳng thức xảy ra ⇔ 2x - 1 = 0 => x = 1/2

=> MaxD = -2 ⇔ x = 1/2

Khách vãng lai đã xóa
Xyz OLM
16 tháng 9 2020 lúc 15:07

Ta có A = x2 + 12x + 39 = (x2 + 12x + 36) + 3 = (x + 6)2 + 3 \(\ge\)3

Dấu "=" xảy ra <=> x + 6 = 0

=> x = -6

Vậy Min A = 3 <=> x = -6

Ta có B = 9x2 - 12x = [(3x)2 - 12x + 4] - 4 =(3x - 2)2 - 4 \(\ge\)-4

Dấu "=" xảy ra <=> 3x - 2 =0

=> x = 2/3

Vậy Min B = -4 <=> x = 2/3

b) Ta có C = 4x - x2 + 1 = -(x2 - 4x - 1) = -(x2 - 4x + 4) + 5 = -(x - 2)2 + 5 \(\le\)5

Dấu "=" xảy ra <=> x - 2 = 0

=> x = 2

Vậy Max C = 5 <=> x = 2

Ta có D = -4x2 + 4x - 3 = -(4x2 - 4x + 1) - 2 = -(2x - 1)2 - 2 \(\le\)-2

Dấu "=" xảy ra <=> 2x - 1 = 0

=> x = 0,5

Vậy Max D = -2 <=> x = 0,5

Khách vãng lai đã xóa
Pose Black
Xem chi tiết
HT.Phong (9A5)
21 tháng 7 2023 lúc 8:10

\(A=\sqrt{1-6x+9x^2}+\sqrt{9x^2-12x+4}\)

\(A=\sqrt{1^2-2\cdot3x\cdot1+\left(3x\right)^2}+\sqrt{\left(3x\right)^2-2\cdot2\cdot3x+2^2}\)

\(A=\sqrt{\left(1-3x\right)^2}+\sqrt{\left(3x-2\right)^2}\)

\(A=\left|1-3x\right|+\left|3x-2\right|\)

\(A=\left|1-3x+3x-2\right|\)

\(A=\left|-1\right|=1\)

Dấu "=" xảy ra \(\left(1-3x\right)\left(3x-2\right)\ge0\)

\(\Rightarrow\dfrac{1}{3}\le x\le\dfrac{2}{3}\)

Vậy: \(A_{min}=1\) khi \(\dfrac{1}{3}\le x\le\dfrac{2}{3}\)

Hồ Quế Ngân
Xem chi tiết
White Silver
Xem chi tiết
ILoveMath
12 tháng 9 2021 lúc 17:12

a) \(A=x^2-2x+6\\ =\left(x^2-2x+1\right)+5\\ =\left(x-1\right)^2+5\ge5\)

Dấu "=" xảy ra \(\Leftrightarrow x=1\)

b) \(B=4x^2+12x-3\\ =\left(4x^2+12x+9\right)-6\\ =\left(2x+3\right)^2-6\ge-6\)

Dấu "=" xảy ra \(\Leftrightarrow x=-\dfrac{3}{2}\)

c) \(C=1-x+x^2\\ =\left(x^2-x+\dfrac{1}{4}\right)+\dfrac{3}{4}\\ =\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

Dấu "=" xảy ra \(\Leftrightarrow x=\dfrac{1}{2}\)

Lấp La Lấp Lánh
12 tháng 9 2021 lúc 17:11

\(A=x^2-2x+6=\left(x-1\right)^2+5\ge5\)

\(minA=5\Leftrightarrow x=1\)

\(B=4x^2+12x-3=\left(2x+3\right)^2-12\ge-12\)

\(minB=-12\Leftrightarrow x=-\dfrac{3}{2}\)

\(C=1-x+x^2=\left(x-\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)

\(minC=\dfrac{3}{4}\Leftrightarrow x=\dfrac{1}{2}\)

Nguyễn Thị Hồng Trâm
Xem chi tiết
Edogawa Conan
30 tháng 9 2019 lúc 5:53

Ta có:

a) A = x2 + 6x + 10 = (x2 + 6x + 9) + 1 = (x + 3)2 + 1 \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x + 3 = 0 <=> x = -3

Vậy MinA = 1 <=> x = -3

b) B = 4x2 - 12x + 13 = 4(x2 - 3x + 9/4) + 4 = 4(x - 3/2)2 + 4 \(\ge\)\(\forall\)x

Dấu "=" xảy ra <=> x - 3/2 = 0 <=> x = 3/2

Vậy MinB = 4 <=> x = 3/2