(x^2-9)^2-9(x-3)^2=0
(x2 + 9) (9x2 -1) = 0
(4x2 -9) (2x-1 -1) =0
( 3x+2) (9-x2 ) =0
(3x+3)2 ( 4x - 42 ) =0
2(x-5) ( x+2) =1
a: (x^2+9)(9x^2-1)=0
=>9x^2-1=0
=>x^2=1/9
=>x=1/3 hoặc x=-1/3
b: (4x^2-9)(2^(x-1)-1)=0
=>4x^2-9=0 hoặc 2^(x-1)-1=0
=>x^2=9/4 hoặc x-1=0
=>x=1;x=3/2;x=-3/2
c: (3x+2)(9-x^2)=0
=>(3x+2)(3-x)(3+x)=0
=>\(\left[{}\begin{matrix}3x+2=0\\3-x=0\\3+x=0\end{matrix}\right.\Leftrightarrow x\in\left\{-\dfrac{2}{3};3;-3\right\}\)
d: (3x+3)^2(4x-4^2)=0
=>3x+3=0 hoặc 4x-16=0
=>x=4 hoặc x=-1
e: \(2^{\left(x-5\right)\left(x+2\right)}=1\)
=>(x-5)(x+2)=0
=>x-5=0 hoặc x+2=0
=>x=5 hoặc x=-2
(x2-9)2-9(x-3)2=0
\(\left(x^2-9\right)^2-9\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x-3\right)^2\left(x+3\right)^2-9\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x-3\right)^2\left[\left(x+3\right)^2-9\right]=0\)
\(\Leftrightarrow\left(x-3\right)^2\left[x^2+6x+9-9\right]=0\)
\(\Leftrightarrow\left(x-3\right)^2\left(x^2+6x\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x\left(x+6\right)=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\\left[{}\begin{matrix}x=0\\x=-6\end{matrix}\right.\end{matrix}\right.\)
Vậy \(S=\left\{0;3;-6\right\}\)
\(\left(x-3\right)^2\left(x+3\right)^2-9\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x-3\right)^2\left(x+3-3\right)\left(x+3+3\right)=0\Leftrightarrow x=3;x=0;x=-6\)
\(\left(x^2-9\right)^2-9.\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x-3\right).\left(x+3\right).\left(x-3\right).\left(x+3\right)-9.\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x-3\right)^2.\left[\left(x+3\right)^2-9\right]=0\)
\(\Leftrightarrow\left(x-3\right)^2.\left[\left(x+3-3\right).\left(x+3+3\right)\right]=0\)
\(\Leftrightarrow\left(x-3\right)^2.x.\left(x+6\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(x-3\right)^2=0\\x=0\\x+6=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=0\\x=-6\end{matrix}\right.\)
Vậy nghiệm của phương trình là: \(S=\left\{0;3;-6\right\}\)
Giải phương trình:
a/ x2 - 2(x-2) = 4
b/ x2 - 9 - 2x(x - 3) = 0
a/
\(\Leftrightarrow x^2-2x+4-4=0\\ \Leftrightarrow x\left(x-2\right)=0\)
\(\Leftrightarrow x=0;x-2=0\)
\(\Leftrightarrow x=0;x=2\)
b/
\(\Leftrightarrow\left(x-3\right)\left(x+3\right)-2x\left(x-3\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(x+3-2x\right)=0\)
\(\Leftrightarrow\left(x-3\right)\left(3-x\right)=0\)
\(\Rightarrow x=3\)
\(a,x^2-2.\left(x-2\right)=4\\ \Leftrightarrow x^2-2x+4-4=0\\ \Leftrightarrow x^2-2x=0\\ \Leftrightarrow x.\left(x-2\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x-2=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=2\end{matrix}\right.\\ \Rightarrow S=\left\{0;2\right\}\\ b,x^2-9-2x\left(x-3\right)=0\\ \Leftrightarrow x^2-4x^2+6x-9=0\\ \Leftrightarrow-3x^2+6x-9=0\\ \Leftrightarrow x^2-2x+3=0\\ \Leftrightarrow\left(x^2-2x+1\right)+2=0\\ \Leftrightarrow\left(x-1\right)^2=-2\left(vô.lí\right)\\ \Rightarrow Pt.vô.nghiệm\)
Bài 8: Rút gọn các biểu thức sau:
a)(x2-1)3 – (x4 + x2+1)(x2 - 1)
b) (x4 - 3x2 + 9)( x2 + 3) – (3 + x2)2
c)(x-3)3 –(x-3)(x2+3x+9) +6(x+1)2
Câu 2.(1,5 điểm) Tìm x, biết:
a) 5x(x2 – 9) = 0. b) 3(x+3) - x2 - 3x =0. c) x2 – 9x – 10 = 0
\(a,5x\left(x^2-9\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x^2=9\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\\ b,3\left(x+3\right)-x^2-3x=0\\ \Leftrightarrow3\left(x+3\right)-x\left(x+3\right)=0\\ \Leftrightarrow\left(x+3\right)\left(3-x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=-3\end{matrix}\right.\\ c,x^2-9x-10=0\\ \Leftrightarrow x^2+x-10x-10=0\\ \Leftrightarrow x\left(x+1\right)-10\left(x+1\right)=0\\ \Leftrightarrow\left(x-10\right)\left(x+1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=-1\\x=10\end{matrix}\right.\)
a, 5\(x\)(\(x^2\) - 9) = 0
\(\left[{}\begin{matrix}x=0\\x^2-9=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=3\\x=-3\end{matrix}\right.\)
Vậy \(x\) \(\in\) { -3; 0; 3}
b, 3.(\(x+3\)) - \(x^2\) - 3\(x\) = 0
3.(\(x+3\)) - \(x\).( \(x\) + 3) = 0
(\(x+3\))( 3 - \(x\)) = 0
\(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy \(x\) \(\in\){ -3; 3}
c, \(x^2\) - 9\(x\) - 10 = 0
\(x^2\) + \(x\) - 10\(x\) - 10 = 0
\(x.\left(x+1\right)\) - 10.( \(x-1\)) = 0
(\(x+1\))(\(x-10\)) = 0
\(\left[{}\begin{matrix}x+1=0\\x-10=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=-1\\x=10\end{matrix}\right.\)
Vậy \(x\) \(\in\){ -1; 10}
a) 5x(x2-9)=0
=> TH1 5x=0
<=> x= 0
TH2: 2x-9=0
<=> 2x=9
<=> x = \(\dfrac{9}{2}\)
b, 3(x+3) - x2- 3x = 0
<=> 3x + 9 - x2 -3x = 0
<=> - x2 +9 = 0
<=> - x2 = -9
<=> x = 3
c, x2 -9x -10 = 0
<=> x2 -x + 10x -10 = 0
<=> x(x-1)+10(x-1)=0
<=> (x-1)(x+10)=0
=> TH1: x-1=0
<=> x=1
TH2: x +10=0
<=> x=-10
a) x2(x - 5) + 5 - x = 0; b) 3x4 - 9x3 = -9x2 + 27x;
c) x2(x + 8) + x2 = -8x; d) (x + 3)(x2 -3x + 5) = x2 + 3x.
e) 3x(x - 1) + x - 1 = 0;
f) (x - 2)(x2 + 2x + 7) + 2(x2 - 4) - 5(x - 2) = 0;
g) (2x - 1)2 - 25 = 0;
h) x3 + 27 + (x + 3)(x - 9) = 0.
i)8x3 - 50x = 0; k) 2(x + 3)-x2 - 3x = 0;
m)6x2 - 15x - (2x - 5)(2x + 5) =
a: \(\Leftrightarrow\left(x-5\right)\left(x+1\right)\left(x-1\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5\\x=-1\\x=1\end{matrix}\right.\)
d: \(\Leftrightarrow\left(x+3\right)\left(x^2-4x+5\right)=0\)
\(\Leftrightarrow x+3=0\)
hay x=-3
a, (2x+3)2-(x-2)2=0
b, (x – 1) 2 – x2 – 6x–9 = 0
Tìm x biết (x2 - 9)2-(x-3)2 =0
\(\left(x^2-9\right)^2-\left(x-3\right)^2=0\)
\(\Leftrightarrow\left(x-3\right)^2\cdot\left(x+2\right)\left(x+4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-2\\x=-4\end{matrix}\right.\)
Tìm x:
a)x.(x-1)-(x-2)2=2
b)x2-9=(x-3).(6-x)
c)x2-x-6=0
Tìm x:
a)x.(x-1)-(x-2)2=2
b)x2-9=(x-3).(6-x)
c)x2-x-6=0
\(a,\Leftrightarrow x^2-x-x^2+4x-4=2\\ \Leftrightarrow3x=6\Leftrightarrow x=2\\ b,\Leftrightarrow\left(x-3\right)\left(x+3\right)-\left(x-3\right)\left(6-x\right)=0\\ \Leftrightarrow\left(x-3\right)\left(x+3-6+x\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=3\\x=\dfrac{3}{2}\end{matrix}\right.\\ c,\Leftrightarrow x^2+2x-3x-6=0\\ \Leftrightarrow\left(x+2\right)\left(x-3\right)=0\Leftrightarrow\left[{}\begin{matrix}x=-2\\x=3\end{matrix}\right.\)