chứng tỏ rằng : \(\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{2n^2}< \frac{1}{4}\)(nϵN,n≥2)
chứng tỏ rằng : \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\)<1 (nϵN , n≥2)
\(\frac{1}{2^2}< \frac{1}{1\cdot2}\\ \frac{1}{3^2}< \frac{1}{2\cdot3}\\ \frac{1}{4^2}< \frac{1}{3\cdot4}\\ ...\\ \frac{1}{n^2}< \frac{1}{\left(n-1\right)\cdot n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< \frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{\left(n-1\right)\cdot n}\\ \Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\\ \Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1-\frac{1}{n}< 1\\ \Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}< 1\left(\text{với }n\in N;n\ge2\right)\)
Chứng tỏ rằng : \(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+.......+\frac{1}{\left(2n\right)^2}< \frac{1}{4}\)
nhanh lên nha các bạn iu
Đặt \(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\) ta có :
\(A=\frac{1}{\left(2.2\right)^2}+\frac{1}{\left(2.3\right)^2}+\frac{1}{\left(2.4\right)^2}+...+\frac{1}{\left(2n\right)^2}\)
\(A=\frac{1}{2^2.2^2}+\frac{1}{2^2.3^2}+\frac{1}{2^2.4^2}+...+\frac{1}{2^2.n^2}\)
\(A=\frac{1}{2^2}.\frac{1}{2^2}+\frac{1}{2^2}.\frac{1}{3^2}+\frac{1}{2^2}.\frac{1}{4^2}+...+\frac{1}{2^2}.\frac{1}{n^2}\)
\(A=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)
\(A< \frac{1}{2^2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right)n}\right)\)
\(A< \frac{1}{2^2}\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{n-1}-\frac{1}{n}\right)\)
\(A< \frac{1}{2^2}\left(1-\frac{1}{n}\right)< \frac{1}{2^2}.1\)
\(A< \frac{1}{2^2}=\frac{1}{4}\)
Vậy \(A< \frac{1}{4}\)
Chúc bạn học tốt ~
\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{4}\)
\(=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{2\cdot4}+\frac{1}{4\cdot6}+\frac{1}{6\cdot8}+...+\frac{1}{\left(2n-2\right)\cdot2n}\)
\(=\left(\frac{2}{2\cdot4}+\frac{2}{4\cdot6}+\frac{2}{6\cdot8}+...+\frac{2}{\left(2n-2\right)\cdot2n}\right)\cdot\frac{1}{2}\)
\(=\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{12}+...+\frac{1}{2n-2}-\frac{1}{2n}\right)\cdot\frac{1}{2}\)
\(=\left(\frac{1}{2}-\frac{1}{2n}\right)\cdot\frac{1}{2}=\frac{1}{4}-\frac{1}{2n\cdot2}< 1\)
\(\Rightarrow\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{4}\left(đpcm\right)\)
Chứng tỏ rằng:
\(B=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{(2n^2)}\le\frac{1}{4}\)\(\frac{1}{4}\)
GIÚP MÌNH VỚI. MÌNH CẦN GẤP!
Chứng tỏ : \(C=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{4}\)
Ta có:
\(\frac{1}{4^2}=\frac{1}{4.4}< \frac{1}{3.4}\)
\(\frac{1}{6^2}=\frac{1}{6.6}< \frac{1}{5.6}\)
\(\frac{1}{8^2}=\frac{1}{8.8}< \frac{1}{7.8}\)
\(...\)
\(\frac{1}{\left(2n\right)^2}=\frac{1}{2n.2n}< \frac{1}{1n.2n}\)
Vậy \(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)\(< \)\(\frac{1}{3.4}+\frac{1}{5.6}+\frac{1}{7.8}+...+\frac{1}{1n.2n}\)
\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)\(< \)\(\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{1n}-\frac{1}{2n}\)
\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)\(< \)\(\frac{1}{3}+\left(\frac{-1}{4}+\frac{1}{4}\right)+\left(\frac{-1}{5}+\frac{1}{5}\right)+...-\frac{1}{2n}\)
\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)\(< \)\(\frac{1}{3}-\frac{1}{2n}\)
Chứng minh rằng:\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n^2\right)}< \frac{1}{4}\)( N \(\in\)N; n\(\ge\)2 )
Số shạng tổng quát là \(\frac{1}{\left(2n\right)^2}.\) mới phải đó bạn ơi.
\(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{2}{\left(2n\right)^2}< \frac{1}{2}\left(\frac{1}{2.4}+\frac{1}{4.6}+\frac{1}{6.8}+...+\frac{1}{\left(2n-1\right)2n}\right)=.\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{4}+\frac{1}{4}-\frac{1}{6}+\frac{1}{6}-\frac{1}{8}+...+\frac{1}{2n-1}-\frac{1}{2n}\right)=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{2n}\right)=\frac{1}{4}-\frac{1}{4n}< \frac{1}{4}.\)
Vậy \(A< \frac{1}{4}\)
Đặt \(A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\)
\(\Rightarrow A=\frac{1}{2^2}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{n^2}\right)\)
\(\Rightarrow A< \frac{1}{2^2}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\right)\)
\(\Rightarrow A< \frac{1}{4}\left(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{\left(n-1\right).n}\right)\)
\(\Rightarrow A< \frac{1}{4}\left(1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{\left(n-1\right)}-\frac{1}{n}\right)\)
\(\Rightarrow A< \frac{1}{4}\left(1-\frac{1}{n}\right)\)
\(\Rightarrow A< \frac{1}{4}-\frac{1}{4n}< \frac{1}{4}\)
Vậy \(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{4}\left(đpcm\right)\)
Cho $A=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}\left(n\in Z;n\ge2\right)$A=142 +162 +182 +...+1(2n)2 (n∈Z;n≥2)
Chứng tỏ A$\notin$∉ N
Chứng minh rằng: \(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}
CHỨNG MINH RẰNG:
\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{\left(2n\right)^2}< \frac{1}{4}\)
Đặt \(A=\frac{1}{4^2}+\frac{1}{6^2}+...+\frac{1}{\left(2n\right)^2}\)
\(=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\right)\)
Có:
\(\frac{1}{2^2}< \frac{1}{1.2}\)
\(\frac{1}{3^2}< \frac{1}{2.3}\)
\(...\)
\(\frac{1}{n^2}< \frac{1}{\left(n-1\right)n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{\left(n-1\right)n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{n-1}-\frac{1}{n}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}< 1-\frac{1}{n}< 1\)
\(\Rightarrow A< \frac{1}{2^2}.1=\frac{1}{4}\)
CHỨNG MINH RẰNG:
\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+\frac{1}{10^2}+...+\frac{1}{\left(2n^2\right)}< \frac{1}{4}\)
=>\(\frac{1}{2^2}\)x (\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+...+\(\frac{1}{n^2}\))
Đặt A=\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+\(\frac{1}{4^2}\)+...+\(\frac{1}{n^2}\)
Ta có:\(\frac{1}{2^2}\)<\(\frac{1}{1\cdot2}\)
\(\frac{1}{3^2}\)<\(\frac{1}{2\cdot3}\)
.........\(\frac{1}{n^2}\)<\(\frac{1}{\left(n-1\right)\cdot n}\)
=>\(\frac{1}{2^2}\)+\(\frac{1}{3^2}\)+...+\(\frac{1}{n^2}\)<\(\frac{1}{1\cdot2}\)+\(\frac{1}{2\cdot3}\)+...+\(\frac{1}{\left(n-1\right)\cdot n}\)
=>A<1-\(\frac{1}{2}\)+\(\frac{1}{2}\)-\(\frac{1}{3}\)+...+\(\frac{1}{n-1}\)--\(\frac{1}{n}\)
=>\(\frac{1}{2^2}\)*A<\(\frac{1}{2^2}\)(1--\(\frac{1}{n}\))
=>\(\frac{1}{2^2}\)*A<\(\frac{1}{4}\)(1--\(\frac{1}{n}\))
=>\(\frac{1}{2^2}\)+\(\frac{1}{4^2}\)+...+\(\frac{1}{\left(2n\right)^2}\)<\(\frac{1}{4}\)--\(\frac{1}{4n}\)<\(\frac{1}{4}\)
=>\(\frac{1}{2^2}\)+\(\frac{1}{4^2}\)+...+\(\frac{1}{\left(2n\right)^2}\)<\(\frac{1}{4}\)