Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Ha Nguyen
Xem chi tiết
Akai Haruma
2 tháng 1 lúc 16:52

1/

$10n+4\vdots 2n+7$

$\Rightarrow 5(2n+7)-31\vdots 2n+7$

$\Rightarrow 31\vdots 2n+7$

$\Rightarrow 2n+7\in Ư(31)$

$\Rightarrow 2n+7\in \left\{1; -1; 31; -31\right\}$

$\Rightarrow n\in \left\{-3; -4; 12; -19\right\}$

Akai Haruma
2 tháng 1 lúc 16:53

2/

$5n-4\vdots 3n+1$

$\Rightarrow 3(5n-4)\vdots 3n+1$

$\Rightarroq 15n-12\vdots 3n+1$

$\Rightarrow 5(3n+1)-17\vdots 3n+1$

$\Rightarrow 17\vdots 3n+1$

$\Rightarrow 3n+1\in Ư(17)$

$\Rightarrow 3n+1\in \left\{1; -1; 17; -17\right\}$

$\Rightarrow n\in \left\{0; \frac{-2}{3}; \frac{16}{3}; -6\right\}$

Do $n$ nguyên nên $n\in\left\{0; -6\right\}$

 

Akai Haruma
2 tháng 1 lúc 16:54

3/

$2n^2+n-6\vdots 2n+1$

$\Rightarrow n(2n+1)-6\vdots 2n+1$

$\Rightarrow 6\vdots 2n+1$

$\Rightarrow 2n+1\in Ư(6)$

Mà $2n+1$ lẻ nên: $2n+1\in \left\{1; -1; 3; -3\right\}$

$\Rightarrow n\in \left\{0; -1; 1; -2\right\}$

Diệu Linh Trần Thị
Xem chi tiết
nguyen phuong thao
15 tháng 12 2016 lúc 12:58

làm câu

nguyen phuong thao
Xem chi tiết
No ri do
15 tháng 12 2016 lúc 14:12

Đặt \(Q=\frac{2n^2+7n-2}{2n-1}\)

Ta có \(\frac{2n^2+7n-2}{2n-1}=\frac{n\left(2n-1\right)+4\left(2n-1\right)+2}{2n-1}=n+4+\frac{2}{2n-1}\)

\(Q\in Z\Leftrightarrow\frac{2n^2+7n-2}{2n-1}\in Z\Leftrightarrow\frac{2}{2n-1}\in Z\Leftrightarrow2n-1\inƯ\left(2\right)=\left\{-2;-1;1;2\right\}\)

Sau đó tìm n

 

Thái Thùy Linh
Xem chi tiết
Nguyễn Lê Phước Thịnh
5 tháng 2 2022 lúc 23:26

a: \(\Leftrightarrow2n^2+n-2n-1+3⋮2n+1\)

\(\Leftrightarrow2n+1\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{0;-1;1;-2\right\}\)

b: \(\Leftrightarrow2n^2-4n+5n-10+3⋮n-2\)

\(\Leftrightarrow n-2\in\left\{1;-1;3;-3\right\}\)

hay \(n\in\left\{3;1;5;-1\right\}\)

c: \(\Leftrightarrow10n^2-15n+8n-12+7⋮2n-3\)

\(\Leftrightarrow2n-3\in\left\{1;-1;7;-7\right\}\)

hay \(n\in\left\{2;1;5;-2\right\}\)

d: \(\Leftrightarrow2n^2-n+4n-2+5⋮2n-1\)

\(\Leftrightarrow2n-1\in\left\{1;-1;5;-5\right\}\)

hay \(n\in\left\{1;0;3;-2\right\}\)

Dương Võ
Xem chi tiết
Nguyễn Đắc Nhật
1 tháng 12 2017 lúc 21:06

2.a)n^5+1⋮n^3+1

⇒n^2.(n^3+1)-n^2+1⋮n^3+1

⇒1⋮n^3+1

⇒n^3+1ϵƯ(1)={1}

ta có :n^3+1=1

n^3=0

n=0

Vậy n=0

b)n^5+1⋮n^3+1

Vẫn làm y như bài trên nhưng vì nϵZ⇒n=0

Bữa sau giải bài 3 mình buồn ngủ quá!!!!!!!!

Dương Võ
Xem chi tiết
CR7
Xem chi tiết
Phước Nguyễn
15 tháng 11 2015 lúc 22:44

Ta có: \(2n^2-n-1=2n^2+3n-4n-6+5=n\left(2n+3\right)-2\left(2n+3\right)+5\)

Vì \(n\left(2n+3\right)\)và \(-2\left(2n+3\right)\)chia hết cho \(2n+3\) nên để \(2n^2-n-1\)chia hết cho \(2n+3\) thì \(5\)phải chia hết cho \(2n+3\), tức là \(2n+3\inƯ\left(5\right)=\left\{1;-1;5;-5\right\}\)

Với  \(2n+3=1\)thì \(n=-1\)

Với  \(2n+3=-1\) thì \(n=-2\)

Với  \(2n+3=5\)thì \(n=1\)

Với  \(2n+3=-5\) thì \(n=-4\)

Vậy, để đa thức \(2n^2-n-1\) chia hết cho đa thức \(2n+3\) thì \(n=\left\{-2;-1;1;-4\right\}\) và  \(n\in Z\)

 

What Là Gì
Xem chi tiết
Đinh Tuấn Việt
15 tháng 10 2015 lúc 20:01

Ta có :

\(2n^2-n+2=-n.\left(-2n+1\right)+2\)

Vì -2n + 1 chia hết cho 2n + 1 nên -n.(-2n + 1) cũng chia hết cho 2n + 1

=> 2 chia hết cho 2n + 1

Vì n thuộc Z nên 2n + 1 thuộc {-2;-1;1;2}

=> n thuộc {-1; 0}

nguyễn thi bình
Xem chi tiết
Phúc
3 tháng 2 2018 lúc 23:53

2)

a) 2n+5 chia het cho n-1 

=> 2(n-1) +7 chia het cho n-1 

=: n-1 thuoc uoc cua 7 den day ke bang la xong. 

may cau con lai lam tuong tu

Sa Su Ke
3 tháng 2 2018 lúc 21:21

dài quá ko mún làm

Christyn Luong
Xem chi tiết
Lê Chí Công
23 tháng 10 2016 lúc 21:47

n thuộc {0;-1}

nguyen phuong thao
15 tháng 12 2016 lúc 13:00

cậu giống lê chí công