Tìm a,b để hệ
\(\hept{\begin{cases}\left(m+3\right)x+4y=5a+3b+m\\x+my=ma-2b+2m-1\end{cases}}\)
có nghiệm với mọi giá trị m
Tìm a,b để hệ
\(\hept{\begin{cases}\left(m+3\right)x+4y=5a+3b+m\\x+my=ma-2b+2m-1\end{cases}}\)
có nghiệm với mọi giá trị m
Tìm m nguyên để
a, Hệ phương trình \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)có nghiệm thỏa mãn \(x;y\in Z\)
b, Hệ phương trình \(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{cases}}\)có nghiệm thỏa mãn A=xy đạt giá trị lớn nhất.
a/ \(\hept{\begin{cases}mx+y=2m\\x+my=m+1\end{cases}}\)
\(\Rightarrow\left(x+y\right)\left(m+1\right)=3m+1\)
\(\Leftrightarrow\left(x+y\right)=\frac{3m+1}{m+1}=3-\frac{2}{m+1}\)
Vì x, y nguyên nên (m + 1) phải là ước nguyên của 2.
b/ \(\hept{\begin{cases}\left(m+1\right)x+my=2m-1\\mx-y=m^2-2\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}\left(m+1\right)x+my=2m-1\left(1\right)\\y=mx-m^2+2\left(2\right)\end{cases}}\)
\(\Rightarrow\left(2\right)\Leftrightarrow\left(m+1\right)x+m\left(mx-m^2+2\right)=2m-1\)
\(\Leftrightarrow\left(m^2+m+1\right)\left(x-m+1\right)=0\)
\(\Rightarrow\hept{\begin{cases}x=m-1\\y=2-m\end{cases}}\)
\(\Rightarrow A=\left(m-1\right)\left(2-m\right)=-m^2+3m-2\le\frac{1}{4}\)
alibaba nguyễn có thể làm chi tiết hơn được ko
Cho hệ phương trình \(\hept{\begin{cases}x+y=0\\2x-my=0\end{cases}}\left(1\right)\)
a) Xác định giá trị của m để hệ (1) vô nghiệm
b) Tìm m để hệ (1) có nghiệm (x,y) thỏa mãn x+y=1
Giúp mình với
Cho hpt:\(\hept{\begin{cases}\left(m+1\right)x+8y=4m\\mx+\left(m+3\right)y=3m-1\end{cases}}\)Tìm giá trị nguyên của m để hệ có nghiệm duy nhất (x;y) với x,y có giá trị nguyên
Bài 1: Cho hệ phương trình với tham số m:
\(\hept{\begin{cases}\left(m-1\right)x+y=3m-4\\x+\left(m-1\right)y=m\end{cases}}\)
a) Giải và biện luận hề phương trình.
b) Tìm các giá trị của m để nghiệm của hệ phương trình là các số nguyên
c) tìm các giá trị của m để hệ phương trình có nghiệm dương duy nhất
Bài 2: Cho hệ phương trình với tham số m:
\(\hept{\begin{cases}x+my=m+1\\mx+y=3m-1\end{cases}}\)
a) Giải và biện luận hệ phương trình theo m
b) Trong trường hợp hệ có nghiệm duy nhất, tìm các giá trị của m để tích xy nhỏ nhất.
Ta có hệ phương trình
\(\hept{\begin{cases}\left(m+1\right)x+my-2m-1\\mx-y=m^2-2\end{cases}}\)
Tìm m để hệ phương trình
a) có nghiệm TM
b) x;y đạt GTLN
Cho hệ phương trình:\(\hept{\begin{cases}mx-y=2\\-x-my=-3\end{cases}}\)
a, CM hệ luôn có nghiệm với mọi giá trị của m
b, Tìm m để hệ có nghiệm (x;y) thỏa mãn ĐK: 2x + y = 0
Cho hệ ptrình tham số m
\(\hept{\begin{cases}x+my=3\\mx+y=2m+1\end{cases}}\)
Biết hệ có nghiệm duy nhất (x,y).Tìm giá trị nhỏ nhất P=\(x^2\)+\(3y^2\)
\(\left\{{}\begin{matrix}x+my=3\\m^2x+my=2m^2+m\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+my=3\\\left(m^2-1\right)x=2m^2+m-3\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}x+my=3\\x=\dfrac{2m+3}{m+1}\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{2m+3}{m+1}\\y=\dfrac{1}{m+1}\end{matrix}\right.\)
\(P=\left(\dfrac{2m+3}{m+1}\right)^2+\dfrac{3}{\left(m+1\right)^2}=\left(2+\dfrac{1}{m+1}\right)^2+\dfrac{3}{\left(m+1\right)^2}\)
\(=4+\dfrac{4}{m+1}+\dfrac{4}{\left(m+1\right)^2}=\left(\dfrac{2}{m+1}+1\right)^2+3\ge3\)
\(P_{min}=3\) khi \(m=-3\)
Cho hệ phương trình ẩn (x;y), tham số m: \(\hept{\begin{cases}mx+4y=6\\x+my=3\end{cases}}\). Tìm giá trị của m để hệ đã cho có nghiệm duy nhất.