tìm giá trị nhỏ nhất m của hàm số \(f\left(x\right)=\frac{\left(x+2\right)\left(x+8\right)}{x}\) với x>0
Mn giải giúp mk vs ạ ..mk cần gấp
Tìm GTLN (giá trị lớn nhất) hoặc GTNN(giá trị nhỏ nhất)của:
D=\(\frac{\left|x\right|-2}{\left|x\right|+5}\)
E=\(\frac{3.\left|x\right|+2}{2.\left|x\right|-5}\)
GIÚP MK VS MK ĐANG CẦN RẤT GẤP!
sau 3 phút có kết quả tuy bạn http://olm.vn/hoi-dap/question/772291.html
Tìm giá trị nhỏ nhất của biểu thức:
\(A=\left|x-13\right|+\left|x-14\right|+\left|x-15\right|+\left|x-16\right|+\left|x-17\right|-10\)
giải giúp mk vs các bn :
mk đg cần gấp
\(A=\left|x-13\right|+\left|x-14\right|+\left|x-15\right|+\left|x-16\right|+\left|x-17\right|-10\)
\(=\left(\left|x-13\right|+\left|x-16\right|\right)+\left(\left|x-14\right|+\left|x-17\right|\right)-10+\left|x-15\right|\)
\(=\left(\left|x-13\right|+\left|16-x\right|\right)+\left(\left|x-14\right|+\left|17-x\right|\right)-10+\left|x-15\right|\)
\(\Rightarrow A\ge\left|x-13+16-x\right|+\left|x-14+17-x\right|-10+\left|x-15\right|\)
\(=\left|3\right|+\left|3\right|-10+\left|x-15\right|\)\(=3+3-10+\left|x-15\right|=-6+\left|x-15\right|\)
Vì \(\left|x-15\right|\ge0\forall x\)\(\Rightarrow A\ge-6\)
Dấu " = " xảy ra \(\Leftrightarrow\hept{\begin{cases}\left(x-13\right)\left(16-x\right)\ge0\\\left(x-14\right)\left(17-x\right)\ge0\\x-15=0\end{cases}}\Leftrightarrow\hept{\begin{cases}13\le x\le16\\14\le x\le17\\x=15\end{cases}}\Leftrightarrow x=15\)
Vậy \(minA=-6\Leftrightarrow x=15\)
Tìm GTLN (giá trị lớn nhất) hoặc GTNN(giá trị nhỏ nhất)của:
D=\(\frac{\left|x\right|-2}{\left|x\right|+5}\)
E=\(\frac{3.\left|x\right|+2}{2.\left|x\right|-5}\)
GIÚP MK VS MK ĐANG CẦN RẤT GẤP!
tìm giá trị nhỏ nhất m của hàm số f(x) = \(\dfrac{\left(x+2\right)\left(x+8\right)}{x}\) với x>0
\(f\left(x\right)=\dfrac{x^2+10x+16}{x}=x+\dfrac{16}{x}+10\ge2\sqrt{\dfrac{16x}{x}}+10=14\)
\(f\left(x\right)_{min}=14\) khi \(x=4\)
Tìm giá trị lớn nhất hoặc nhỏ nhất của :
D= \(\frac{\left|x\right|-2}{\left|x\right|+5}\)
E=\(\frac{3.\left|x\right|+2}{2.\left|x\right|-5}\)
GIUPS MK VS MK ĐANG CẦN RẤT GẤP !HU!!!HU!
mi tích tau tau tích mi xong tau trả lời nka
việt nam nói là làm
Cho hàm số \(f\left(x\right)=\dfrac{x-m^2}{x+8}\)với m là tham số cực . Tìm giá trị lớn nhất của m để hàm số có giá trị nhỏ nhất trên đoạn \(\left[0;3\right]=2\)
f'(x)>0 với mọi x khác -8, suy ra hàm số đã cho đồng biến trên [0;3].
Giá trị nhỏ nhất của f(x) trên [0;3] là (-m^2)/8. Ta có: (-m^2)/8=2.
Suy ra, không có giá trị nào của số thực m thỏa yêu cầu đề bài.
tìm giá trị nhỏ nhất
e) E= \(2.\left|x-\dfrac{1}{2}\right|+2021\)
g) G= \(\left|x-1\right|+\left|x-2\right|\)
h) H= \(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
k) K= \(\left|x-1\right|+\left|2x-1\right|\)
lm nhanh giúp mk nhé mk đang cần gấp lắm
1
e) E >= 2021
dấu = xảy ra khi x=1/2
g) G = |x-1|+ |2-x| >= |x-1+2-x|=1
Dấu = xảy ra khi (x-1)(2-x)>=0 <=> 1<=x<=2
h) H = |x-1|+|x-2| + |x-3|
Ta có : |x-1| + |x-3| = |x-1| + |3-x| >= |x-1+3-x| = 2
|x-2| >=0
=> H>=2
Dấu = xảy ra khi (x-1)(3-x) >=0 ; x-2=0
<=> x=2
k) K = |x-1| + |2x-1|
2K = |2x-2| + |2x-1| + |2x-1|
Ta có : |2x-2| + |2x-1| = |2x-2| + |1-2x| >= |2x-2+1-2x|=1
|2x-1| >=0
Dấu = xảy ra (2x-2)(1-2x) >=0; 2x-1=0
<=> x=1/2
e)Vì \(\left|x-\dfrac{1}{2}\right|\ge0\forall x\)
\(\Leftrightarrow2\left|x-\dfrac{1}{2}\right|\ge0\forall x\\ \Rightarrow2\left|x-\dfrac{1}{2}\right|+2012\ge2012\forall x\)
Dấu "=" xảy ra khi x=\(\dfrac{1}{2}\)
Vậy...
b)G=|x-1|+ |2-x|\(\)
áp dụng bđt |a+b|+ |c+d|\(\ge\left|a+b+c+d\right|\forall x\)
\(\Rightarrow\)ta có |x-1|+ |2-x|\(\ge\) \(\left|x-1+2-x\right|\forall x\)
\(\Leftrightarrow\text{|x-1|+ |2-x| }\ge1\forall x\)
Dấu "=" xảy ra khi 1\(\le x\le2\) \(\forall x\)
Vậy...
h)H= |x-1|+|x-2| + |x-3|
Ta có |x-1| + |x-3|
=|x-1| + |3-x| ( trong giá trị tuyệt đối đổi dấu không cần đặt dấu trừ ở ngoài)
=>|x-1| + |3-x|\(\ge\left|x-1+3-x\right|\forall x\)
<=>|x-1| + |3-x|\(\ge2\forall x\) (1)
Mà |x-2|\(\ge0\forall x\) (2)
Từ (1) và (2)=> ta có |x-1|+|x-2| + |x-3| \(\ge2\forall x\)
Dấu "=" xảy ra khi x-2=0
<=>x=2
Vậy...
k) K = |x-1| + |2x-1|
2K = |2x-2| + |2x-1| + |2x-1|
Mà : |2x-2| + |2x-1|
=|2x-2| + |1-2x|\(\ge\text{|2x-2+1-2x|}\) \(\forall x\)
Lại có |2x-1| \(\ge\)0 \(\forall x\)
Dấu "=" xảy ra 2x-1=0
<=>x=\(\dfrac{1}{2}\)
Vậy....
Tìm giá trị nhỏ nhất
e) E=\(2.\left|x-\dfrac{1}{2}\right|+2021\)
g) G=\(\left|x-1\right|+\left|x-2\right|\)
h) H=\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
k) K=\(\left|x-1\right|+\left|2x-1\right|\)
Lm nhanh giúp mk nhé!Mk đang cần gấp lắm
tìm giá trị nhỏ nhất
e)E= \(2.\left|x-\dfrac{1}{2}\right|+2021\)
g) G=\(\left|x-1\right|+\left|x-2\right|\)
h) H=\(\left|x-1\right|+\left|x-2\right|+\left|x-3\right|\)
k) K=\(\left|x-1\right|+\left|2x-1\right|\)
lm nhanh giúp mk nhé! mk đang cần gấp lắm
e) Ta có: \(2\left|x-\dfrac{1}{2}\right|\ge0\forall x\)
\(\Leftrightarrow2\left|x-\dfrac{1}{2}\right|+2021\ge2021\forall x\)
Dấu '=' xảy ra khi \(x=\dfrac{1}{2}\)