Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thị Ngọc Huyền
Xem chi tiết
Quỳnh Chi
29 tháng 1 2020 lúc 20:16

ủa giải gì vậy bạn ????????????????????????????????????????

Khách vãng lai đã xóa
Lê Thị Ngọc Huyền
29 tháng 1 2020 lúc 20:26

Mình gửi đề ạ, chứ sao trên đó nó không hiện đề

\(\begin{cases} x.\sqrt[\text{2}]{\text{1-$y^{2}$}}+y.\sqrt[\text{2}]{\text{1-$x^{2}$}} (1)\\ x+y=1 (2) \end{cases} \)

Khách vãng lai đã xóa
Lê Thị Ngọc Huyền
29 tháng 1 2020 lúc 20:27

\begin{cases}

x.\sqrt[\text{2}]{\text{1-$y^{2}$}}+y.\sqrt[\text{2}]{\text{1-$x^{2}$}} (1)\\

x+y=1 (2)

\end{cases} 

Khách vãng lai đã xóa
Lê Thị Ngọc Huyền
Xem chi tiết
Vũ Nhược Ann
29 tháng 1 2020 lúc 20:30

đề bài lag ?!

Khách vãng lai đã xóa
Hoàng Hương Giang
29 tháng 1 2020 lúc 20:31

Hệ  phương trình j z ???
 

Khách vãng lai đã xóa
tth_new
29 tháng 1 2020 lúc 21:02

Có phải đề thế này không ạ?

\(\hept{\begin{cases}x\sqrt{1-y^2}+y\sqrt{1-x^2}=?\left(1\right)\\x+y=1\left(2\right)\end{cases}}\)

Nếu vậy thì PT (1) thiếu vế phải rồi:))

Khách vãng lai đã xóa
Nhạt
Xem chi tiết
Tran Quang Minh
Xem chi tiết
Đặng Minh Triều
17 tháng 6 2016 lúc 12:02

bạn tách từng câu ra mik suy nghĩ từng câu

Võ Hồng Phúc
Xem chi tiết
Incursion_03
26 tháng 7 2019 lúc 14:33

\(ĐKXĐ:x;y\ge2\)

Trừ 2 vế của hệ cho nhau ta được

\(\left(\sqrt{x+1}-\sqrt{y+1}\right)+\left(\sqrt{y-2}-\sqrt{x-2}\right)=0\)

\(\Leftrightarrow\frac{x+1-y-1}{\sqrt{x+1}+\sqrt{y+1}}+\frac{y-2-x+2}{\sqrt{y-2}+\sqrt{x-2}}=0\)

\(\Leftrightarrow\frac{x-y}{\sqrt{x+1}+\sqrt{y+1}}-\frac{x-y}{\sqrt{x-2}+\sqrt{y-2}}=0\)

\(\Leftrightarrow\left(x-y\right)\left(\frac{1}{\sqrt{x+1}+\sqrt{y+1}}-\frac{1}{\sqrt{x-2}+\sqrt{y-2}}\right)=0\)(1)

Vì \(\sqrt{x+1}+\sqrt{y+1}>\sqrt{x-2}+\sqrt{y-2}\)

\(\Rightarrow\frac{1}{\sqrt{x+1}+\sqrt{y+1}}< \frac{1}{\sqrt{x-2}+\sqrt{y-2}}\)

\(\Rightarrow\frac{1}{\sqrt{x+1}+\sqrt{y+1}}-\frac{1}{\sqrt{x-2}+\sqrt{y-2}}< 0\)(2)

Từ (1) và (2) => x - y = 0

                    <=> x = y

Thay vào 1 trong 2 pt ban đầu có

\(\sqrt{x+1}+\sqrt{x-2}=3\)

\(\Leftrightarrow x+1+2\sqrt{\left(x+1\right)\left(x-2\right)}+x-2=9\)

\(\Leftrightarrow\sqrt{x^2-x-2}=5-x\)

\(\Leftrightarrow\hept{\begin{cases}x\le5\\x^2-x-2=25-10x+x^2\end{cases}}\)

\(\Leftrightarrow\hept{\begin{cases}x\le5\\9x=27\end{cases}}\)

\(\Leftrightarrow x=3\left(tmĐKXĐ\right)\)

Vậy pt có nghiệm duy nhất x = 3

Phương Anh
Xem chi tiết
Hồng Trinh
22 tháng 5 2016 lúc 22:19

1. \(\begin{cases}x+y+xy\left(2x+y\right)=5xy\\x+y+xy\left(3x-y\right)=4xy\end{cases}\) \(\Leftrightarrow\begin{cases}2y-x=1\\x+y+xy\left(2x+y\right)=5xy\end{cases}\) (trừ 2 vế cho nhau)

\(\Leftrightarrow\begin{cases}x=2y-1\\\left(2y-1\right)+y+\left(2y-1\right)y\left(4y-2+y\right)=5\left(2y-1\right)y\end{cases}\) \(\Leftrightarrow\begin{cases}x=2y-1\\10y^3-19y^2+10y-1=0\end{cases}\) \(\Leftrightarrow\begin{cases}x=1\\y=1\end{cases}\)

Phương Anh
23 tháng 5 2016 lúc 14:24

mk ra câu 1 r b lm giúp mk câu 2,3 đc k

 

Nguyễn Tấn Phát
Xem chi tiết

\(1,\hept{\begin{cases}x+2y=5\\3x-y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}3x+6y=15\\3x-y=1\end{cases}\Leftrightarrow}\hept{\begin{cases}x=1\\y=2\end{cases}}\)

\(2,\hept{\begin{cases}9y-2x=10\\4x-2y=12\end{cases}\Leftrightarrow}\hept{\begin{cases}9y-2x=10\\2x-y=6\end{cases}\Leftrightarrow}\hept{\begin{cases}x=4\\y=2\end{cases}}\)

\(3,\hept{\begin{cases}\sqrt{4x-y}=a\\8x-2y=2a^2\end{cases}\Leftrightarrow\hept{\begin{cases}8x-2y=2a^2\\8x-2y=2a^2\end{cases}}\Leftrightarrow khong}cogiatri\)

Khách vãng lai đã xóa
Nguyễn Linh Chi
29 tháng 2 2020 lúc 7:34

3)\(\hept{\begin{cases}8x-2y=2a^2\\8x-2y=2a^2\end{cases}}\Leftrightarrow8x-2y=2a^2\) có vô số nghiệm em nhé!

Khách vãng lai đã xóa
Lan Anh Phạm
Xem chi tiết
Nguyễn Thanh Thanh
30 tháng 10 2017 lúc 20:50

Đặt \(\frac{1}{2x-y}\)= a, \(\frac{1}{x +y}\)= b, ta có \(\hept{\begin{cases}3a-6b=1\\a-b=0\end{cases}}\)

Giải hệ phương trình được a=\(\frac{-1}{3}\), b=\(\frac{-1}{3}\)
 

Mai_Anh_Thư123
Xem chi tiết