tìm các snt p,q sao cho 7p+q và pq+17đều là snt
Tìm các snt p,q sao cho các số sau cũng là snt
a, p + 94 ; p + 1994
b, 2p - 1 ; 4p - 1
c,2p + 1 ; 4p +1
d, 7p + q ; p9 + 11
Tìm SNT p và q sao cho 7p+q và pq+11 đều là SNT .
*** Mấy bn ghi cách giải giùm mk luôn nhé ***
7p + q và pq + 11 đều là số nguyên tố
pq + 11 là số nguyên tố --> pq phải là số chẵn --> hoặc p = 2 hoặc q = 2
** Nếu p = 2 --> 7p + q = 14 + q
ta thấy 14 chia 3 dư 2 ;
+) nếu q chia hết cho 3,q là số nguyên tố --> q = 3
--> 7p + q = 17 --> là số nguyên tố
--> pq + 11 = 17 --> là số nguyên tố --> thỏa
+) nếu q chia 3 dư 1 --> 14 + q chia hết cho 3 --> là hợp số --> loại
+) nếu q chia 3 dư 2 --> 2q chia 3 dư 1 --> pq + 11 = 2q + 11 chia hết cho 3 --> là hợp số --> loại
** Nếu q = 2 --> 7p + q = 2 + 7p
2 chia 3 dư 2 ;
+) nếu 7p chia hết cho 3 --> p chia hết cho 3 --> p = 3
--> 7p + q = 23
--> pq + 11 = 17 --> đều là ố nguyên tố --> thỏa
+) nếu 7p chia 3 dư 1 --> 2 + 7p chia hết cho 3 --> là hợp số --> loại
+) nếu 7p chia 3 dư 2 --> p chia 3 dư 2 --> 2p chia 3 dư 1
--> pq + 11 = 2p + 11 chia hết cho 3 --> là hợp số --> loại
Tóm lại có 2 giá trị của p ; q thỏa mãn là : p = 2 ; q = 3 hoặc p = 3 ; q = 2
tìm p và q sao cho p+q và p-q đều là SNT
Tìm tất cả các SNT p sao cho \(p^2+14\) cũng là SNT
+ Nếu p = 3 thì \(p^2+14=23\)là số nguyên tố.
+ Nếu p > 3. Vì p là số nguyên tố nên p không chia hết cho 3.
Nếu p chia 3 dư 1 thì p = 3k + 1 và \(p^2+14=9k^2+6k+15=3\left(3k^2+2k+5\right)\)chia hết cho 3 nên không phải số nguyên tố.Nếu p chia 3 dư 2 thì p = 3k + 2 và \(p^2+14=9k^2+6k+24=3\left(3k^2+2k+8\right)\)chia hết cho 3 nên không phải số nguyên tố.Vậy chỉ có p = 3 thỏa mãn yêu cầu của đề bài.
Nếu p=2 => \(p^2+14\)= 22+14=18( loại )
Nếu p=3=> \(p^2+14\)=32+14=23 ( thỏa mãn )
=> Nếu p>3 => p không chia hết cho 3=>\(\hept{\begin{cases}p=3k+1\\p=3k+2\end{cases}}\)(k thuộc N*)
Nếu p= 3k+1 => \(p^2+14\)= (3k+1)2+14=9k2+6k+1+14=9k2+6k+14 chia hết cho 3 ( loại )
Nếu p=3k+2=> \(p^2+14\)= (3k+2)2+14= 9k2+12k+4+14=9k2+12k+18 chia hết cho 3 ( loại )
Vậy p=3
Tìm p và q sao cho p+q và p nhân q đều là snt
Cho p là snt >3 và 14p+1 là snt cmr 7p+1 chia hết cho 6
tìm tất cả các cặp SNT p,q để p.q + 1 và p.q2 + 1 là SNT
( giải chi tiết nha )
tìm SNT p sao cho các số p+3 và p+5 cũng là SNT
Nếu p = 2
=> p + 3 = 5 (tm)
p + 5 = 7 (tm)
Nếu p > 2 => p = 2k + 1
Khi đó p + 3 = 2k + 1 + 3 = 2k + 4 = 2(k + 2) \(⋮\)2 => loại
Vậy p = 2 là giá trị cần tìm
Tìm SNT x,y sao cho 5x+y và xy +13 cũng là các SNT
Vì x,y là số nguyên tố nên có 3 th:x,y lẻ.x,y chẵn, 1 chẵn , 1ler
Xét các trường hợp :
+Nếu cả hai đều lẻ thì 5x+y và xy+13 là số chẵn , mà 2 số là snt nên 2 cái đều bằng 2.(vô lí)
+Nếu cả 2 chẵn mà x y là snt nên x=y=2.Xét xem đùng ko.....
+Nếu 1 lẻ 1 chẵn thì nếu x chẵn thì x=2(x là snt) thay vào 5x+y và xy + 13 và làm như bài 5a đề 11
Xét tiếp nếu y chẵn , x lẻ tương tự