so sánh A và B:
a) A= 2 + 2^2 + 2^3 +...+ 2^2021 và B= 2^2022
b) A= 5^200 và B= 2^500
So sánh:
a) 2^500 và 5^200
b) 2^722 và 3^183
a) Ta có: 2500 = (25)100 = 32100
5200= (52)100= 25100
Vì 32100>25100 => 2500 > 5200
a)2^500 và 5^200
2^500<5^200
b)2^722 và 3^183
2^722>3^183
2500 = (25) 100 = 32 100
5200 = (52)100 = 25100
Vì 32 > 25 nên 32100 > 25100
Vậy A > B
So sánh:
a/ A = 10*30 và B = 2*100
b/ 72*45 - 72*44 và 72*44 - 72*43 ; 2*500 và 5*200
a) A>B
b) 72*45-72*44=72*44-72*43 ; 2*500=5*200
so sánh a và b biết : A=1/2+1/2^2+...+1/2^2021 và A= 1/3+1/4+1/5+1/60
Lời giải:
$A=\frac{1}{2}+\frac{1}{2^2}+...+\frac{1}{2^{2021}}$
$2A=1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{2020}}$
$\Rightarrow 2A-A=1-\frac{1}{2^{2021}}$
$\Rightarrow A=1-\frac{1}{2^{2021}}
$B=\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{60}=\frac{4}{5}=1-\frac{1}{5}$
Hiển nhiên $\frac{1}{2^{2021}}< \frac{1}{5}\Rightarrow 1-\frac{1}{2^{2021}}> 1-\frac{1}{5}$
$\Rightarrow A> B$
so sánh a và b bt a= 2+2^2+2^3+....+2^2021
b=2^2022
A=2+22+23+...+22021
2A=22+23+24+...+22022
2A-A=(22+23+24+...+22022)-(2+22+23+...+22021)
A=22022-2 mà B= 22022 nên A<B.
1. So sánh
a) \(A=\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2020}}+\dfrac{1}{2^{2021}}\) và B= \(\dfrac{1}{3}+\dfrac{1}{4}+\dfrac{1}{5}+\dfrac{13}{60}\)
b) \(C=\dfrac{2019}{2021}+\dfrac{2021}{2022}\) và \(D=\dfrac{2020+2022}{2019+2021}.\dfrac{3}{2}\)
a) Ta có:
2A=2.(12+122+123+...+122020+122021)2�=2.12+122+123+...+122 020+122 021
2A=1+12+122+123+...+122019+1220202�=1+12+122+123+...+122 019+122 020
Suy ra: 2A−A=(1+12+122+123+...+122019+122020)2�−�=1+12+122+123+...+122 019+122 020
−(12+122+123+...+122020+122021)−12+122+123+...+122 020+122 021
Do đó A=1−122021<1�=1−122021<1.
Lại có B=13+14+15+1360=20+15+12+1360=6060=1�=13+14+15+1360=20+15+12+1360=6060=1.
Vậy A < B.
So sánh
a)333^444 và 444^333
b)5^200 và 2^500
So sánh
a)333^444 và 444^333
b)5^200 và 2^500
Ta có : A = \(333^{444}=\left(333^4\right)^{111}\)
B = \(444^{333}=\left(444^3\right)^{111}\)
A và B đã có cùng mẫu số là 111 \(\Rightarrow\)cần so sánh \(333^4\)và\(444^3\).
\(333^4=\left(3\times111\right)^4=3^4\times111^4=81\times111^4\)
\(444^3=\left(4\times111\right)^3=4^3\times111^3=64\times111^3\)
\(\Rightarrow333^4>444^3\Rightarrow333^{444}>444^{333}.\)
Đây là câu b) :
Ta có : \(5^{200}=\left(5^2\right)^{100}=25^{100}\)
\(2^{500}=\left(2^5\right)^{100}=32^{100}\)
Mà \(25^{100}< 32^{100}\Rightarrow5^{200}< 2^{500}\).
Vậy \(5^{200}< 2^{500}\).
a) Ta có: 333444 = (111.3)111.4 =(1114 . 34)111 = (1114 . 81)111
444333 = (111.4)111.3 = (1113 . 43)111 = (1113 .64)111
Mà (1114.81) > (1113 . 64)111
Nên 333444 > 444333
b) 2^500 = (2^5)^100 = 32^100
5^200 = (5^2)^100 = 25^100
Vì 32 > 25 nên 32^100 > 25^100
Vậy 2^500 > 5^200
Cho A = \(1+2+2^2+...+2^{2021}\) và B = \(2^{2022}\). So sánh A và B.
`# \text {DNamNgV}`
\(A=1+2+2^2+...+2^{2021}\text{ và }B=2^{2022}\)
Ta có:
\(A=1+2+2^2+...+2^{2021}\\ \Rightarrow2A=2+2^2+2^3+...+2^{2022}\\\Rightarrow2A-A=\left(2+2^2+2^3+...+2^{2022}\right)-\left(1+2+2^2+...+2^{2021}\right)\\ \Rightarrow A=2+2^2+2^3+...+2^{2022}-1-2-2^2-...-2^{2021}\\ \Rightarrow A=2^{2022}-1\)
Vì \(2^{2022}-1< 2^{2022}\)
\(\Rightarrow A< B.\)