Tìm GTNN của P = \(\sqrt{a^2+\frac{1}{b^2}}\) + \(\sqrt{b^2+\frac{1}{a^2}}\)
Cho \(a+b+c\le\sqrt{3}\)
Tìm GTNN của \(M=\frac{a}{\sqrt{a^2+1}}+\frac{b}{\sqrt{b^2+1}}+\frac{c}{\sqrt{c^2+1}}\)
1) Cho x,y dương. Tìm GTNN của:
\(P=\frac{x^2+12}{x+y}+y\)
2) Cho a,b>0 thỏa a^2+b^2=1.
Tìm GTNN của \(A=\frac{1}{a}+\frac{1}{b}-\left(\sqrt{\frac{a}{b}}-\sqrt{\frac{b}{a}}\right)^2\)
cho a, b, c>0 và \(a+b+c\le\frac{3}{2}\)
tìm GTNN của S=\(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}+}\sqrt{c^2+\frac{1}{a^2}}\)
\(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\frac{81}{\left(a+b+c\right)^2}}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\frac{81}{16\left(a+b+c\right)^2}+\frac{1215}{16\left(a+b+c\right)^2}}\)
\(\ge\sqrt{\frac{2.9}{4}+\frac{1215.4}{16.9}}=\frac{3\sqrt{17}}{2}\)
√a2+1b2 +√b2+1c2 +√c2+1a2
≥√(a+b+c)2+(1a +1b +1c )2
≥√(a+b+c)2+81(a+b+c)2
≥√(a+b+c)2+8116(a+b+c)2 +121516(a+b+c)2
≥√2.94 +1215.416.9 =3√172
\(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}.\)
\(\ge\sqrt{\left(a+b+c\right)^2+\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}\right)^2}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\frac{81}{\left(a+b+c\right)^2}}\)
\(\ge\sqrt{\left(a+b+c\right)^2+\frac{81}{16\times\left(a+b+c\right)^2}+\frac{1215}{16\times\left(a+b+c\right)^2}}\)
\(\ge\sqrt{\frac{2\times9}{4}+\frac{1215\times4}{16\times9}}=\frac{3\sqrt{17}}{2}\)
cho a,b,c>0 và a+b+c\(\le\frac{3}{2}\).Tìm GTNN của S=\(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}}+\sqrt{c^2+\frac{1}{a^2}}\)
\(S\ge3\sqrt[6]{\frac{a^2b^2+1}{ab}.\frac{b^2c^2+1}{bc}.\frac{c^2a^2+1}{ca}}\)
Sở trường của Thắng. ( làm rùm) mình tịt rồi.
cho biểu thức A=\(\left(\frac{1}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2}{x-1}\right)\)
a/ Rút gọn A
b/ Tính GT của P khi x= \(\frac{2}{2+\sqrt{3}}\)
c/ Với GT nào của x thì A đạt GTNN và tìm GTNN đó
Cho \(P=\left(\frac{\sqrt{a-b}}{\sqrt{a+b}+\sqrt{a-b}}+\frac{a-b}{\sqrt{a^2-b^2}-a+b}\right):\frac{\sqrt{a^2-b^2}}{a^2+b^2}\)(a>b>0)
Rút gọn P và tìm GTNN của P khi b=a-1
bài 1:
\(P=\frac{x^2-x}{x+\sqrt{x}+1}-\frac{2x+\sqrt{x}}{x-1}+\frac{2x-2}{x-1}\)
a) Rút gọn
b) tìm GTNN của P
c) Tìm x để \(Q=\frac{2\sqrt{x}}{P}\)có giá trị nguyên
bài 2. \(N=\left(\frac{2x\sqrt{x}+x-\sqrt{x}}{2\sqrt{x}-1}-\frac{x+\sqrt{x}}{x-1}\right).\frac{x-1}{2x+\sqrt{x}-1}+\frac{\sqrt{x}}{2\sqrt{x}-1}\)
a) Tìm x để N xác định
b) Tìm x để N đạt GTNN tìm GTNN đó
lm mí bài nì rối quá, ai giúp mk vs
A= \(\left(\frac{1}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2}{x-1}\right)\)
a) Rút gọn A
b) Tìm GTNN của A
cho a, b, c>0 và \(a+b+c\le\frac{3}{2}\)
tìm GTNN của S=\(\sqrt{a^2+\frac{1}{b^2}}+\sqrt{b^2+\frac{1}{c^2}+}\sqrt{c^2+\frac{1}{a^2}}\)
Tính: \(\sqrt{\frac{\left(\sqrt{2}-\sqrt{3}\right)^2}{2}}-\sqrt{\frac{7}{2}+2\sqrt{3}}\)
Cho biểu thức: \(A=\left(\frac{1}{\sqrt{x}-2}-\frac{1}{\sqrt{x}}\right):\left(\frac{\sqrt{x}-1}{\sqrt{x}-2}-\frac{\sqrt{x}+2}{\sqrt{x}+1}\right)\)
a) Rút gọn A
b) Tìm GTNN của \(B=A\sqrt{x}-x\)