Cho một điểm m bất kì trong hình chữ nhật ABCD. Chứng minh:
MA2+MC2=MB2+MC2
Bài 1. Cho hình chữ nhật ABCD, M là một điểm bất kì thỏa mãn AMB ̂ =900
. Chứng minh rằng MA2 + MB2 + MC2 + MD2 không đổi
Bài 2. Cho đường tròn (O,R), P là điểm cố định nằm trong đường tròn.
Qua P kẻ 2 dây cung AB và CD vuông góc với nhau.
1) Chứng minh PA2 + PB2 + PC2 + PD2 không đổi
2) Gọi M là trung điểm của AC. Chứng minh PM vuông góc với BD
Cho hình vuông ABCD cạnh a . Tìm tập hợp M sao cho :
2 MA2 + MB2 = MC2 + MD2
Cho tứ diện ABCD. Tìm vị trí điểm M trong không gian sao cho:
M A 2 + M B 2 + M C 2 + M D 2 đạt giá trị cực tiểu.
Gọi E, F lần lượt là trung điểm của AB và CD. Ta có:
Cộng (1) và (2) ta có:
Gọi J là trung điểm của EF, ta có:
Khi đó:
Vậy M A 2 + M B 2 + M C 2 + M D 2 đạt giá trị nhỏ nhất khi M ≡ J.
Cho tam giác ABC vuông cân tại B và M thuộc miền trong tam giác sao cho góc BMC =135 độ. Chứng minh MA2=2.MB2+MC2
Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh a, độ dài cạnh bên bằng 2a. Xét điểm M thay đổi trên mặt phẳng (SAB) sao cho tổng T = M A 2 + M B 2 + M C 2 + M D 2 nhỏ nhất. Khi đó, độ dài đoạn thẳng SM bằng
A. 7 a 15 15
B. a 15 2
C. a 15 3
D. 4 a 15 15
Cho hình chóp đều S.ABCD có đáy ABCD là hình vuông cạnh a, độ dài cạnh bên bằng 2a. Xét điểm M thay đổi trên mặt phẳng (SAB) sao cho tổng T = M A 2 + M B 2 + M C 2 + M D 2 nhỏ nhất. Khi đó, độ dài đoạn thẳng SM bằng
Cho A(1; 2), B(-3; 1) và C(4; -2). Tìm tập hợp các điểm M sao cho MA2 + MB2= MC2
Gọi M(x, y)
⇒ MA2 = (x – 1)2 + (y – 2)2
MB2 = (x + 3)2 + (y – 1)2
MC2 = (x – 4)2 + (y + 2)2
MA2 + MB2 = MC2
⇔ (x – 1)2 + (y – 2)2 + (x + 3)2 + (y – 1)2 = (x – 4)2 + (y + 2)2
⇔ [(x – 1)2 + (x + 3)2 – (x – 4)2] + [(y – 2)2 + (y – 1)2 – (y + 2)2] = 0
⇔ (x2 – 2x +1 +x2 + 6x + 9 – x2 + 8x -16) + (y2 – 4y + 4 + y2 – 2y + 1 – y2 – 4y – 4) = 0
⇔ (x2 + 12x – 6) + (y2 – 10y + 1) = 0
⇔ (x2 + 12x – 6 +42) + (y2 – 10y + 1+ 24) = 42 +24
⇔ (x2 + 12x + 36) + (y2 – 10y + 25) = 66
⇔ (x + 6)2 + (y – 5)2 = 66.
Vậy tập hợp các điểm M là đường tròn tâm I(–6; 5), bán kính R = √66.
Trong không gian với hệ tọa độ Oxyz, cho ba điểm A 1 ; 0 ; 0 , B 0 ; 2 ; 0 , C 0 ; 0 ; 3 . Tập hợp các điểm M thỏa M A 2 = M B 2 + M C 2 là mặt cầu có bán kính
A. R = 2
B. R = 3
C. R = 3
D. R = 2
Trong không gian với hệ trục tọa độ Oxyz, cho ba điểm A 1 ; 0 ; 0 , B 0 ; 2 ; 0 , C 0 ; 0 ; 3 . Tập hợp các điểm M thỏa M A 2 = M B 2 + M C 2 là mặt cầu có bán kính
A. R = 2
B. R = 3
C. R = 3
D. R = 2
Đáp án D
Ta có: M B 2 + M C 2 − M A 2 = M B → 2 + M C → 2 − M A → 2 = M I → + I B → 2 + M I → + I C → 2 − M I → + I A → 2
= M I 2 + 2 M I → I B → + I C → − I A → + I B 2 + I C 2 − I A 2
Gọi I là điểm thỏa mãn I B → + I C → − I A → = 0 → ⇒ I − 1 ; 2 ; 3
Suy ra M B 2 + M C 2 − M A 2 = M I 2 + I B 2 + I C 2 − I A 2 = 0 ⇔ M I = I A 2 − I B 2 − I C 2 = 2
Cho tứ diện ABCD đều có cạnh bằng a và trọng tâm G. Tập hợp các điểm M thỏa mãn M A 2 + M B 2 + M C 2 + M D 2 = 11 a 2 2 là mặt cầu