cho tam giác ABC cân tại A ( BC< AB)
Lấy D thuộc AB sao cho CD=AB
a, chứng minh góc ACB = góc CDB
b, trên tia đối của tia CA lấy E sao cho CE=AD. Chứng minh BE=BA
Tam giác ABC cân tại A (BC<AB). Trên cạnh AB lấy điểm D sao cho CD=CB
a) C/m góc ACB= góc CDB
b) Trên tia đối của tia CA lấy E sao cho CE=AD
C/m BE=BA
a, CD=CB=> tam giác BDC cân => gócCDB = gócCBD mà gócACB=gócABC(tam giác ABC cân)=> gócACB=gócCDB
Cho tam giác ABC cân tại A(BC<AB).Trên cạnh AB lấy D sao cho CD=CB.CM:
a)góc ACB = góc CDB
b)Trên tia đối tia CA lấy E sao cho CE=AD .CM:BE=BA
a)Tam giác ABC cân ở A=>góc ABC=ACB
CD=CB=>Tam giác CBD cân ở C=>CDB=ABC
=>ACB=CDB(cùng = ABC)
bạn tham khảo tại đây Giúp tôi giải toán - Hỏi đáp, thảo luận về toán học - Học toán với OnlineMath
tíc đúng cho tớ nhé
Cho tam giác ABC cân tại A(BC<AB).Trên cạnh AB lấy điểm D sao choCD=CB
a) CM góc ACB=góc CDB
b) Trên tia đối của tia CA lấy điểm E sao cho CE=AD. CM BE=BA
Bài 1 :
Cho ABC nhọn (AB < AC). Gọi M là trung điểm của BC. Trên tia AM lấy đi ểm N sao cho M là trung điểm của AN.
a/. Ch/m : ΔAMB = ΔNMC
b/. Vẽ CD \bot AB (D\in AB). So sánh góc ABC và góc BCN. Tính góc DCN.
c/. Vẽ AH \bot BC (H \in BC), trên tia đối của tia HA lấy điểm I sao cho HI = HA.
Ch/m : BI = CN.
BÀI 2 :
Vẽ góc nhọn xAy. Trên tia Ax lấy hai điểm B và C (B nằm giữa A và C). Trên tia Ay lấy hai điểm D và E sao cho AD = AB; AE = AC
a) Chứng minh BE = DC
b) Gọi O là giao điểm BE và DC. Chứng minh tam giác OBC bằng tam giác ODE.
c) Vẽ trung điểm M của CE. Chứng minh AM là đường trung trực của CE.
Bài 3
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
Bài 4.
Cho tam giác ABC ( AB< AC ) . Gọi I là trung điểm của AC. Trên tia đối của tia IB lấy điểm D, sao cho IB = ID. Chứng minh :
a) Tam giác AIB bằng tam giác CID.
b) AD = BC v à AD // BC.
BÀI 4
Cho tam giác ABC có góc A =350 . Đường thẳng AH vuông góc với BC tại H. Trên đường vuông góc với BC tại B lấy điểm D không cùng nửa mặt phẳng bờ BC với điểm A sao cho AH = BD.
a) Chứng minh ΔAHB = ΔDBH.
b) Chứng minh AB//HD.
c) Gọi O là giao điểm của AD và BC. Chứng minh O là trung điểm của BH.
d) Tính góc ACB , biết góc BDH= 350 .
Bài 5 :
Cho tam giác ABC cân tại A và có \widehat{A}=50^0 .
Tính \widehat{B} và \widehat{C}
Lấy D thuộc AB, E thuộc AC sao cho AD = AE. Chứng minh : DE // BC.
Bài 6 :
Cho tam giác ABC cân tại A. Lấy D thuộc AC, E thuộc AB sao cho AD = AE.
Chứng minh : DB = EC.
Gọi O là giao điểm của BD và EC. Chứng minh : tam giác OBC và ODE là tam giác cân.
Chứng minh rằng : DE // BC.
Bài 7
Cho tam giác ABC. Tia phân giác của góc C cắt AB tại D. trên tia đối của tia CA lấy điểm E sao cho CE = CB.
Chứng minh : CD // EB.
Tia phân giác của góc E cắt CD tại F. vẽ CK vuông góc EF tại K. chứng minh : CK Tia phân giác của góc ECF.
Bài 8 :
Cho tam giác ABC vuông tại A có \widehat{B}=60^0 . Vẽ Cx vuông góc BC, trên tia Cx lấy điểm E sao cho CE = CA (CE , CA nằm cùng phía đối BC). trên tia đối của tia BC lấy điểm F sao cho BF = BA. Chứng minh :
Tam giác ACE đều.
A, E, F thẳng hàng.
Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
Cho tam giác ABC cân tại A có BC < AB, gọi M là trung điểm của BC.
a) Chứng minh ABM = ACM từ đó suy ra AM là tia phân giác của góc BAC.
b) Trên cạnh AB lấy điểm D sao cho CB = CD. Kẻ tia phân giác của góc BCD, tia này cắt
cạnh BD tại N. Chứng minh CN BD
c) Trên tia đối của tia CA lấy điểm E sao cho AD = CE. Chứng minh BCEADC
d) Chứng minh: BA = BE.
a/ Xét ΔABM;ΔACMΔABM;ΔACM có :
⎧⎩⎨⎪⎪AB=ACBˆ=CˆMB=MC{AB=ACB^=C^MB=MC
⇔ΔAMB=ΔAMC(c−g−c)⇔ΔAMB=ΔAMC(c−g−c)
b/ Xét ΔBHM;ΔCKMΔBHM;ΔCKM có :
⎧⎩⎨⎪⎪⎪⎪BHMˆ=CKMˆ=900Bˆ=CˆMB=MC{BHM^=CKM^=900B^=C^MB=MC
⇔ΔBHM=ΔCKM(ch−gn)⇔ΔBHM=ΔCKM(ch−gn)
⇔BH=CK
BCE=ADC nhes cacs banj
Cho tam giác ABC cân tại A(BC<AB). Trên canh AB lấy điểm D sao cho CD=CB.
a) Chứng minh góc ACB= góc CDB.
b) Trên tia đối của tia CA lấy điểm E sao cho CE=AD. Chứng minh BE=BA.
a) Tam giác CBD có CB=CD (gt)
=> Tam giác CBD cân ở C
=> Góc CDB = Góc CBD
Mà góc CBD = góc ACB ( Vì tam giác ABC cân tại A)
=> Góc CDB = góc ACB
b)
Ta có: Góc ADC + góc BDC = 1800 ( kề bù)
Góc ACB + góc BCE = 1800 (Kề bù)
Mà góc BDC = Góc ACB ( theo câu a)
ð Góc ADC = góc BCE
Xét tam giác ADC và tam giác ECB có:
AD=CE(gt)
DC=BC(gt)
Góc ADC = Góc BCE (theo chứng minh trên)
=>Tam giác ADC = Tam giác ECB (c.g.c )
=>AC=BE ( 2 cạnh tương ứng)
Mà AC=AB( Vì Tam giác ABC cân ở A)
=>BE=BA
cho tam giác abc cân tại a. trên tia đối của tia ab lấy điểm d sao cho AD=AB và tia phân giác AE của CAD ( E thuộc CD )
a, vẽ tia phân giác AK của BAC ( K thuộc BC ). Chứng minh AK//CD
b,Tính góc BCD
a: ΔABC cân tại A
mà AK là phân giác
nen K là trung điểm của BC
Xét ΔCBD có
A,K lần lượt là trung điểm của BD,BC
=>AK là đường trung bình
=>AK//CD
b: Xét ΔCBD có
CA là trung tuyến
CA=BD/2
=>ΔBDC vuông tại C
=>góc BCD=90 độ
cho tam giác abc cân tại a. trên tia đối của tia ab lấy điểm d sao cho AD=AB và tia phân giác AE của CAD ( E thuộc CD )
a, vẽ tia phân giác AK của BAC ( K thuộc BC ). Chứng minh AK//CD
b,Tính góc BCD
a: ΔABC cân tại A
mà AK là đường phân giác
nên AK vuông góc BC và K là trung điểm của BC
Xét ΔDCB có
K,A lần lượt là trung điểm của BC,BD
=>KA là đường trung bình
=>KA//CD và KA=CD/2
b: KA//CD
KA vuông góc BC
=>DC vuông góc CB
=>góc DCB=90 độ
Cho tam giác ABC có AB = AC và BC < AB, M là trung điểm BC.
a) Chứng minh AM là tia phân giác góc BAC.
b) Trên cạnh AB lấy điểm D sao cho CB = CD. Tia phân giác góc BCD cắt BD tại N. Chứng minh CN vuông góc với BD.
c) Trên tia đối tia CA lấy điểm E sao cho AD = CE. Chứng minh ˆ B C E = ˆ A D C .
d) Chứng minh BA = BE.