chứng tỏ 128 . 324 = 18 16
Cho S= 1/2 + 1/8 + 1/18 + 1/32 + 1/50 + 1/72 + 1/98 + 1/128 + 1/162
Chứng tỏ S < 18/19
18 nhân 19 - 250 : 15 + 35 : 7 + 8
289 : 17 + 324 : 18 + 21 : 3
( 72 + 128 + 64 ) - 25 nhan 8
3500 : 50 + 9 ( 126 + 81 + 15 ) : 5
1 + 3 + 5 + 7 + ......... + 299
Chứng tỏ S=1/16+1/17+1/18+1/29+1/20<1/3
\(S< \dfrac{1}{15}+\dfrac{1}{15}+\dfrac{1}{15}+\dfrac{1}{15}+\dfrac{1}{15}=\dfrac{5}{15}=\dfrac{1}{3}\)
Tìm số tự nhiên x, biết
x-32:16=18
15+2x=17
324-13x=57.5
`@` `\text {Ans}`
`\downarrow`
`x - 32 \div 16 = 18`
`=> x - 2 = 18`
`=> x = 18 + 2`
`=> x = 20`
Vậy, `x = 20.`
`15 + 2x = 17`
`=> 2x = 17 - 15`
`=> 2x = 2`
`=> x = 2 \div 2`
`=> x = 1`
Vậy, `x = 1`
`324 - 13x = 57*5`
`=> 324 - 13x = 285`
`=> 13x = 324 - 285`
`=> 13x = 39`
`=> x = 39 \div 13`
`=> x = 3`
Vậy, `x = 3.`
`@` `\text {Kaizuu lv uuu}`
chứng tỏ rằng
128.912 = 1816
\(VT=12^8.9^{12}=\left(2^2.3\right)^8.\left(3^2\right)^{12}=2^{16}.3^8.3^{24}=2^{16}.3^{32}=2^{16}.\left(3^2\right)^{16}=2^{16}.9^{16}=\left(2.9\right)^{16}=18^6=VP\)
Xét: \(12^8\cdot9^{12}=\left(2^2\cdot3\right)^8\cdot\left(3^2\right)^{12}\)
\(=2^{16}\cdot3^8\cdot3^{24}=2^{16}\cdot3^{32}\)
\(=2^{16}\cdot\left(3^2\right)^{16}=2^{16}\cdot9^{16}=18^{16}\)
Ta có:
\(12^8.9^{12}=2^{16}.9^4.9^{12}=2^{16}.9^{16}=\left(2.9\right)^{16}=18^{16}\left(đpcm\right)\)
Cho A= 3/ 4+ 8/ 9+ 15/ 16+...+ 399/ 400
Chứng tỏ A> 18
A = 3/4 + 8/9 + 15/16 + ... + 399/400
A = 1 - 1/4 + 1 - 1/9 + 1 - 1/16 + ... + 1 - 1/400
A = (1 + 1 + 1 + ... +1) - (1/4 + 1/9 + 1/16 + ... + 1/400)
A = 19 - (1/2.2 + 1/3.3 + 1/4.4 + ... + 1/20.20)
đặt b = 1/2.2 + 1/3.3 + 1/4.4 + ... + 1/20.20
có 1/2.2 < 1/1.2 ; 1/3.3 < 1/2.3 ; ... 1/20.20 < 1/19.20
=> b < 1/1.2 + 1/2.3 + 1/3.4 + ... + 1/19.20
=> b < 1 - 1/2 + 1/2 - 1/3 + 1/3 - 1/4 + ... + 1/19 - 1/20
=> b < 1 - 1/20
=> b < 1
mà A = 19 - b
=> A > 18
\(A=\frac{3}{4}+\frac{8}{9}+\frac{15}{16}+...+\frac{399}{400}\)
\(=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+.....+\frac{20^2-1}{20^2}\)
\(=19-\left(\frac{1}{2^2}+\frac{1}{3^2}+.....+\frac{1}{20^2}\right)\)
\(>19-\left(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+....+\frac{1}{19\cdot20}\right)\)
\(=19-\left(\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+......+\frac{1}{19}-\frac{1}{20}\right)\)
\(=19-\left(1-\frac{1}{20}\right)\)
\(>19-1=18\)
\(A=\frac{2^2-1}{2^2}+\frac{3^2-1}{3^2}+...+\frac{20^2-1}{20^2}\)
\(A=\frac{2^2}{2^2}-\frac{1}{2^2}+\frac{3^2}{3^2}-\frac{1}{3^2}+...+\frac{20^2}{20^2}-\frac{1}{20^2}\)
\(A=19-\left(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{20^2}\right)\)
Đặt \(B=\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{20^2}\)
\(B< \frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{19.20}\)
\(B< 1-\frac{1}{20}< 1\)
\(B< 1\)
\(\Rightarrow A>19-1\)
\(\Rightarrow A>18\)
chứng tỏ 15/15*16 + 15/16*17+15/17.*18+15/18*19+15/19*20 nhỏ hơn 1/3
mấy bạn trả lời nhanh nha , mình cần gấp lắm , làm đi , mình tick cho
Gọi \(S=\frac{15}{15\cdot16}+\frac{15}{16\cdot17}+..+\frac{15}{19\cdot20}\)
\(\Leftrightarrow S=1-\frac{15}{16}+\frac{15}{16}-\frac{15}{17}+...+\frac{15}{19}-\frac{15}{20}\)
\(\Leftrightarrow S=1-\frac{15}{20}=\frac{1}{4}<\frac{1}{3}\)
Vậy S< \(\frac{1}{3}\)
--------------------Good luck------------------------
a) 5√1,96 - 4√2,25 + 3√1,69
b) 1/3√49 + 3/4√324 - 2/3√400
c) 5/6√289 - 1/2√256 + 2/5√225
d) 15√16/25 + 12√9/16 - 18√16/81
a: =5*1,4-4*1,5+3*1,3
=7-6+3,9=4,9
b: =1/3*7+3/4*18-2/3*20
=7/3+54/4-40/3
=-11+54/4
=2,5
c: =5/6*17-1/2*16+2/5*15
=85/6-8+6
=85/6-2
=73/6
d: =15*4/5+12*3/4-18*4/9
=12+9-8
=12+1=13
câu 5 9/8 của 16 là
a,18 b,2 c,128 d,81