cho ΔABC. Gọi I là trung điểm của AC. Kẻ AH ⊥BI tại H,CE ⊥BI tại E.C/M AH=CE
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Lấy điểm K sao cho H là trung điểm của AK.
a. Chứng minh ΔABK cân và Δ ACK cân.
b. Qua A kẻ tia Ax // BC, qua C kẻ tia Cy // AH. Tia Ax cắt tia Cy tại E.
Chứng minh: AH = CE và AE ⊥ CE.
c. Gọi giao điểm của AC và HE là I; CH và IK là Q; M là trung điểm của KC.
Chứng minh: A; Q; M thẳng hàng.
d. Tìm điều kiện của ΔABC để AB//QK.
Cho tam giác ABC vuông tại A (AB < AC), đường cao AH. Lấy điểm K sao cho H là trung điểm của AK.
a. Chứng minh ΔABK cân và Δ ACK cân.
b. Qua A kẻ tia Ax // BC, qua C kẻ tia Cy // AH. Tia Ax cắt tia Cy tại E.
Chứng minh: AH = CE và AE ⊥ CE.
c. Gọi giao điểm của AC và HE là I; CH và IK là Q; M là trung điểm của KC.
Chứng minh: A; Q; M thẳng hàng.
d. Tìm điều kiện của ΔABC để AB//QK.
Cho tam giác ABC, có AB = AC. Gọi M là trung điểm của BC
c) Gọi I là trung điểm của AM; Trên tia BI lấyđiểm H sao cho BI = IH. Chứng minh AH song song BC
d) Qua M kẻ đường thẳng song songvới AC cắt đường thẳng AH tại K. Chứng minh A là trung điểm của HK.
c: Xét tứ giác ABMH có
I là trung điểm của AM
I là trung điểm của BH
Do đó: ABMH là hình bình hành
Suy ra: AH//BC
Cho tam giác ABC cân tại A ( A <90 độ) Vẽ phía ngoài tam giác là tam giác ABE vuông tại B. Gọi H là trung điểm BC. Trên tia đối tia Ah lấy I sao cho AI = BC . CM: BI = CE và BI ⊥ CE
Xét ΔAIB và ΔBCE có
AI=BC
BE=BA
góc IAB=góc EBC
=>ΔABI=ΔBEC
=>góc AIB=góc BCE
ΔHIB vuông tại H có góc AIB+góc IBH=90 độ
=>góc BCE+góc IBH=90 độ
=>CE vuông góc BI
Cho △ABC vuông tại A có BC = 5, AB = 2AC
A. Tính AC
b. Vẽ đường cao AD, trên tia đối AH lấy điểm I sao cho AI = \(\dfrac{1}{3}\)AH. Kẻ Cy // AH. Gọi A là giao điểm của BI và Cy. Tính \(S_{AHCD}\)
c. Vẽ (B; AB) và (C; AC) cắt nhau tại E. C/m CE là tiếp tuyến (B)
Cho ΔABC cân tại A, M là trung điểm của AB. Trên tia đối tia MC lấy điểm D sao cho DM = MC. Kẻ MN // BC (N ϵ AC). Gọi H là trung điểm của BC, 2 đường thẳng BN và AD cắt nhau tại E. Chứng minh 3 đường thẳng AH,BD,CE cùng đi qua một điểm.
Xét tứ giác ADBC có
M la trung điểm chung của AB và DC
nên ADBC là hình bình hành
=>góc ADB=góc ACB
Xét ΔABC có
MN//BC
AM/AB=1/2
=>N là trung điểm của AC
Xét ΔNBC và ΔNEA có
góc NCB=góc NAE
NC=NA
góc BNC=góc ENA
=>ΔNBC=ΔNEA
=>NB=NE
=>AECB là hình bình hành
=>CE=AB=AC=BD và góc AEC=góc ABC
=>góc AEC=góc ADB
Gọi giao của BD và CE là K
Xét ΔKDE có góc KDE=góc KED
nên ΔKDE cân tại K
=>KD=KE
=>KB=KC
=>K nằm trên trung trực của BC
mà AH là trung trực của BC
nên A,H,K thẳng hàng
Cho tam giác ABC có AB=AC. Gọi H,I là trung điểm của BC, AC
a. Cho AB=5CM, BC=8 CM.Tính Ah
b.AH cắt BI tại M.CM cắt AB tai D
c. Lấy IM=IE trên tia đối của tia IB. Qua M kẻ đường thẳng song song với BC cắt CE tại K
Chứng minh KE=KC
a)
Xét \(\Delta ABH\)và \(\Delta ACH\)có :
\(AB=AC\left(GT\right)\) (1)
\(BH=CH\)( Vì H là trung điểm của BC ) (2)
\(AH\): Cạnh chung (3)
Từ (1);(2) và (3)
\(\Rightarrow\Delta ABH=\Delta ACH\left(c.c.c\right)\)
=> \(\Rightarrow\widehat{BAH}=\widehat{CAH}\)( Cặp góc tương ứng)
=> AH là đường phân giác
Vì AB = AC (GT)
=> \(\Delta BAC\)cân
Xét \(\Delta BAC\)có :
\(\widehat{BAH}=\widehat{CAH}\)
=> AH là đường cao của tam giác
( vì trong 1 tam giác cân đường phân giác ứng với cạnh đáy đồng thời là đường cao)
\(\Rightarrow AH\perp BC\)
Ta có : H là trung điểm của BC
Mà BC = 8cm
=> HB=HC = 4cm
Áp dụng định lí Py-ta-go cho tam giác vuông BHA có :
\(AB^2=AH^2+BH^2\)
\(\Rightarrow5^2=AH^2+4^2\)
\(\Rightarrow25=AH^2+16\)
\(\Rightarrow AH^2=25-16\)
\(\Rightarrow AH^2=9\)
\(\Rightarrow AH=\sqrt{9}\)
\(\Rightarrow AH=3cm\)
Câu b chứng minh cái gì vậy bạn .
Cho ΔABC nhọn (AB<AC) . Đường tròn tâm O đường kính BC cắt các cạnh AC,AB lần lượt tại D và E . Gọi H là giao điểm của BD và CE ; F là giao điểm của AH và BC . Gọi M là trung điểm của AH . Chứng minh DM là tiếp tuyến của (O)
góc BEC=1/2*180=90 độ
góc BDC=1/2*180=90 độ
Xét ΔABC có
BD,CE là đường cao
DB cắt CE tại H
=>H là trực tâm
=>AH vuông góc BC tại F
góc MDO=góc MDH+góc ODH
=góc MHD+góc DBC
=góc HBF+góc FHB=90 độ
=>DM là tiếp tuyến của (O)
1, cho ΔABC, trực tâm H. Đường vuông góc với AB tại B và đường vuông góc vói AC tại C cắt nhau bởi . M là trung điểm của BC, đường cao BN
a, BNCD là hình gì
b, Gọi O là trung điểm của AD. C/m OM=1/2 AH
2, cho ΔABC, các đường cao BD,CE cắt nhau tại H. Gọi I là trung điểm của AH, M là trung điểm của BC
a, C/m: lE=lD
b, C/m: D là điểm đối xứng với E qua lM
c, Góc lDM=?
Bài 2:
a: Ta có: ΔAEH vuông tại E
mà EI là đường trung tuyến
nên IE=AH/2(1)
Ta có: ΔADH vuông tại D
mà DI là đường trung tuyến
nên DI=AH/2(2)
Từ (1) và (2) suy ra IE=ID
b: Xét tứ giác BEDC có
\(\widehat{BEC}=\widehat{BDC}=90^0\)
Do đó: BEDC là tứ giác nội tiếp đường tròn đường kính BC
=>ME=MD
hay M nằm trên đường trung trực của ED(1)
Ta có: IE=ID
nên I nằm trên đường trung trực của ED(2)
Từ (1) và (2) suy ra IM là đường trung trực của ED
hay D đối xứng với E qua IM