Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Đặng Thanh Phong
Xem chi tiết
Xem chi tiết
duy an tran
Xem chi tiết
Rin Huỳnh
22 tháng 5 2023 lúc 14:11

Giả thuyết Goldbach tam nguyên. Và chưa ai có thể chứng minh điều này.

゚°☆Žυƙα☆° ゚
Xem chi tiết
Duc Loi
29 tháng 5 2019 lúc 14:28

Hình như đề bài bị sai : 3 là số nguyên tố lớn hơn 2 

-> 3 không thể phân tích thành tổng của 3 số nguyên tố

5 là số nguyên tố lớn hơn 2 -> 5 không thể phân tích thành tổng của 3 số nguyên tố .

Nếu như vậy thì phải nói rằng :       Chứng minh rằng

Tất cả các số nguyên lớn hơn 5 là tổng của ba số nguyên tố.

Đề sai rùi nha 

chúc bn 

học tốt

theo mình nghĩ vậy

Đề sai rùi nha 

chúc bn 

học tốt

theo mình nghĩ vậy

Lưu Đức Mạnh
Xem chi tiết
Si-Chun
Xem chi tiết
meme
21 tháng 8 2023 lúc 19:41

Bài 1: Thuyết số Goldbach là một bài toán trong lĩnh vực thuyết số, được đặt theo tên của nhà toán học Christian Goldbach. Thuyết số Goldbach đưa ra một giả thuyết rằng tất cả các số nguyên lớn hơn 2 đều có thể biểu diễn được dưới dạng tổng của hai số nguyên tố.

 

Ví dụ: 4 = 2 + 2, 6 = 3 + 3, 8 = 3 + , 10 = 3 + 7 hoặc 5 + 5, ...

 

Mặc dù đã có nhiều nỗ lực để chứng minh hoặc phản chứng giả thuyết này, nhưng cho đến nay vẫn chưa có bằng chứng cụ thể. Thuyết số Goldbach vẫn là một bài toán chưa được giải quyết hoàn toàn trong thuyết số hiện đại.

meme
21 tháng 8 2023 lúc 19:42

Để giải biểu thức này, chúng ta có thể thực hiện theo thứ tự các phép toán (còn được gọi là PEMDAS).

 

Đầu tiên, chúng ta đơn giản hóa phép chia: 1/3.

 

1/3 bằng 0,33333 (số thập phân lặp lại).

 

Bây giờ, chúng ta có thể viết lại biểu thức:

 

9 - 3 + 0.33333

 

Tiếp theo, chúng ta trừ 3 từ 9:

 

9 - 3 = 6

 

Cuối cùng, chúng ta thêm 0,33333 vào 6:

 

6 + 0.33333 = 6.33333

 

Vì vậy, kết quả của biểu thức 9 - 3 + 1/3 xấp xỉ 6,33333.

Lan Anh
Xem chi tiết
Lan Anh
8 tháng 10 2023 lúc 20:19

(????????????????????) sao toán lớp bốn khó thế

 

 

 

 

 

 

 

 

nguyễn thành long
8 tháng 10 2023 lúc 20:39

._. :0 :) 

Nguyễn Gia Huy
8 tháng 10 2023 lúc 21:28

Toán 6đó 

Nguyễn Diệu Anh
Xem chi tiết
Trần Thị Khánh Linh
Xem chi tiết
T.Q.Hưng.947857
6 tháng 11 2019 lúc 21:07

1

gọi số cần tìm là p.dễ thấy p lẻ

=>p=a+2 và p=b-2

=>a=p-2 và b=p+2

vì p-2,p,p+2 là 3 số lẻ liên tiếp nên có một số chia hết cho 3

với p-2=3=>p=5=7-2(chọn)

p=3=>p=1+2(loại)

p+2=3=>p=1(loại)

vậy p=5

2

vì p1, p2, p3 là 3 số nguyên tố (SNT) > 3 
theo giả thiết: 
p3 = p2 + d = p1 + 2d (*) 
=> d = p3 - p2 là số chẵn ( vì p3, p2 lẻ) 
đặt d = 2m, xét các trường hợp: 
* m = 3k => d chia hết cho 6 
* m = 3k + 1: khi đó 3 số là: 
p2 = p1 + d = p1 + 2m = p1 + 6k + 2 
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 4 
do p1 là SNT > 3 nên p1 chia 3 dư 1 hoặc 2 
nếu p1 chia 3 dư 1 => p2 = p1 + 6k + 2 chia hết cho 3 => p2 là hợp số (không thỏa gt) 
nếu p1 chia 3 dư 2 => p3 = p1 + 12k + 4 chia hết cho 3 => p3 là hợp số (---nt--) 
=> p1, p2 , p3 là SNT khi m ≠ 3k + 1 
* m = 3k + 2, khi đó 3 số là: 
p2 = p1 + d = p1 + 2m = p1 + 6k + 4 
p3 = p1 + 2d = p1 + 4m = p1 + 12k + 8 
nếu p1 chia 3 dư 1 => p3 = p1 + 12k + 8 chia hết cho 3 => p3 là hợp số (không thỏa gt) 
nếu p 1 chia 3 dư 2 => p2 = p1 + 6k + 4 chia hết cho 3 => p2 là hợp số ( không thỏa gt) 
=> p1, p2 , p3 là SNT khi m ≠ 3k + 2 
vậy để p1, p 2, p 3 đồng thời là 3 SNT thì m = 3k => d = 2m = 6k chia hết cho 6.

3

ta có p,p+1,p+2 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.

mà p,p+2 là SNT >3 nên p,p+2 ko chia hết cho 3 và là số lẻ

=>p+1 chia hết cho 3 và p+1 chẵn=>p+1 chia hết cho 6

4

vì p là SNT >3=>p=3k+1 hoặc p=3k+2

với p=3k+1=>p+8=3k+9 chia hết cho 3

với p=3k+2=>p+4=3k+6 ko phải là SNT

vậy p+8 là hợp số

5

vì 8p-1 là SNt nên p>3=>8p ko chia hết cho 3

vì 8p,8p+1,8p-1 là 3 số liên tiếp nên 1 trong 3 số chia hết cho 3.mà 8p,8p-1 là SNT >3=>8p+1 chia hết cho 3 và 8p+1>3

=>8p+1 là hợp số

6.

Ta có: Xét:

+n=0=>n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15n+1=1;n+3=3;n+7=7;n+9=9;n+13=13;n+15=15(hợp số,loại)

+n=1

=>n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16n+1=2;n+3=4;n+7=8;n+9=10;n+13=14;n+15=16(hợp số,loại)

+n=2

=>n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17n+1=3;n+3=5;n+7=9;n+9=11;n+13=15;n+15=17(hợp số,loại)

+n=3

=>n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18n+1=4;n+3=6;n+7=10;n+9=12;n+13=16;n+15=18(hợp số,loại)

+n=4

n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19n+1=5;n+3=7;n+7=11;n+9=13;n+13=17;n+15=19(SNT,chọn)

Nếu n>4 sẽ có dạng 4k+1;4k+2;4k+3

+n=4k+1

⇔n+3=4k+1+3=4k+4⇔n+3=4k+1+3=4k+4(hợp số,loại)

+n=4k+2

=>n+13=4k+2+13=4k+15n+13=4k+2+13=4k+15(hợp số,loại)

+n=4k+3

=>n+3=4k+3+3=4k+6n+3=4k+3+3=4k+6(hợp số,loại)

⇔n=4

Khách vãng lai đã xóa
nguyen thi chuyen
12 tháng 3 2022 lúc 14:44

4.vì p là số nguyên tố >3

nên p có dạng 3k+1;3k+2

xét p=3k+1 ta có :p+4=(3k+1)+4=3k+5(thỏa mãn)

xét p=3k+2 ta có: p+4=(3k+2)+4=3k+6 chia hết cho 3(trái với đề bài)

vậy p+8=(3k+1)+8=3k+9 chia hết cho 3

Vậy p+8 là hợp số

 

Bùi Huyền Thư
11 tháng 8 lúc 9:26

1. Gọi số M là số lẻ, Q là số chẵn, nguyên tố cần tìm là P ( P ≠ 2 vì 2 là số nguyên tố chẵn duy nhất, nhỏ nhất nên không thể là tổng) 

- P = A + 2 ( M + Q = M )

- P = B - 2 ( M - Q = M )

- A = P - 2; B = P +  2 

P + 2; P; P - 2 ⇒ 3 số lẻ liên tiếp.

- P ≠ 1 vì P là số nguyên tố.

- P ≠ 2 vì 2 là số nguyên tố chẵn duy nhất, nhỏ nhất nên không thể là tổng.

- P ≠ 3 vì 3 = A + 2; 3 = 1 + 2 ( 1 không phải là số nguyên tố )

- P = 5 vì A + 2 = 5 = B - 2

               3 + 2 = 5 = 7 - 2

⇒ P = 5