Tìm các số nguyên dương x,y,z thỏa mãn : x! + y! =10z+9
1, tìm các số nguyên dương x,y,z thỏa mãn 8x+9y+10z=100 và x+y+z>11
2,tìm x là số nguyên lớn nhất thỏa mãn x< ( √5 +2)^8
3, tìm các số tự nhiên x,y,z thỏa mãn đồng thời (x-1) ³ +y ³ -2z ³ =0 và x+y+x=1
đg cần gấp lắm , help me!!
Tìm tất cả các số nguyên dương x,y,z thỏa mãn đồng thời các điều kiện:
x+y+z>11 và 8x+9y+10z=100
bạn bấm vào đúng 0 sẽ ra kết quả
mình làm bài này rồi
Tìm các số nguyên dương x,y,z thỏa mãn
a) \(1!+2!+...+x!=y^2\)
b) \(x!+y!=10z+9\)
tìm tất cả các số nguyên dương x,y,z thỏa mãn x+y+z>11 và 8x+9y+10z=100
bn nào giỏi làm hộ cái
Tìm các số ngyên dương x,y,z thỏa mãn:
a) x! + y! = 10z + 9
b) 1! + 2! +.....+x! = y2
Tìm tất cả các số nguyên dương x,y,z thỏa mãn
\(\hept{\begin{cases}x+y+z>11\\8x+9y+10z=100\end{cases}}\)
Ta có:
\(8x+8y+8z< 8x+9y+10z\)
\(\Rightarrow x+y+z< \frac{100}{8}< 13\)
\(\Rightarrow Gt\Leftrightarrow11< x+y+z< 13\)
Mà x+y+z nguyên dương \(\Rightarrow x+y+z=12\)
Ta có hệ: \(\hept{\begin{cases}x+y+z=12\left(1\right)\\8x+9y+10z=100\left(2\right)\end{cases}}\)
Nhân 2 vế của (1) với 8 ta đc:
\(\hept{\begin{cases}8x+8y+8z=96\left(3\right)\\8x+9y+10z=100\left(2\right)\end{cases}}\)
Trừ theo vế của (2) cho (3) ta đc:\(y+2z=4\left(4\right)\).
Từ \(\left(4\right)\Rightarrow z=1\)(vì nếu \(z\ge2\), thì do\(y\ge1\Rightarrow y+2z\ge4\),Mâu thuẫn)
Với \(z=1\Rightarrow y=2;x=9\)
Vậy...
Do các số x,y,zx,y,z nguyên dương nên
x+y+z>11 suy ra x+y+z≥12
Có
100=8(x+y+z)+(y+2z)≥96+(y+2z)
Suy ra
4≥y+2z≥3
Tức là
y+2z ∈ {3;4}
Theo đề bài thì
8x+9y+10z=100
Số y là số chẵn .
Tức là y+2z cũng là số chẵn .
Suy ra
y+2z=4 Hay y=2; z=1
Thế ngược lại vào
8x+9y+10z=100 tìm được x=9
Vậy (x,y,z)=(9,2,1)
Tìm các số nguyên x,y,z thỏa mãn:6x+15y+10z=3
cho x,y,z là các số dương thỏa mãn xy+yz+zx=\(\dfrac{9}{4}\)
Tìm giá trị nhỏ nhất của biểu thức P=\(x^2+14y^2+10z^2-4\sqrt{2y}\)
Lời giải:
Áp dụng BĐT AM-GM:
\(\frac{x^2}{2}+8y^2\geq 4xy\)
\(\frac{x^2}{2}+8z^2\geq 4xz\)
\(2(y^2+z^2)\geq 4yz\)
\(4y^2+1\geq 4y\)
\(4y+2\geq 4\sqrt{2y}\)
Cộng theo vế các BĐT trên ta có:
\(P+3\geq 4(xy+yz+xz)=\frac{9}{4}.4=9\Rightarrow P\geq 6\)
Vậy $P_{\min}=6$. Giá trị này đạt tại $(x,y,z)=(2,\frac{1}{2}, \frac{1}{2})$
Tìm các số nguyên dương x, y, z thỏa mãn xyz 9 x y z