Tìm nghiệm nguyên của phương trình
x^2+y^2-2x-8y=0
giải phương trình nghiệm nguyên 3x^2+3xy+3y^2=x+8y
giải phương trình nghiệm nguyên 2x^2+3y^2-5xy+3x-2y-3=0
Với câu a)bạn nhân cả 2 vế cho 12 rồi ép vào dạng bình phương 3 số
Câu b)bạn nhân cho 8 mỗi vế rồi ép vào bình phương 3 số
tìm nghiệm nguyên của phương trình : x^2+5y^2-4xy+4x-8y-12=0
\(PT\Leftrightarrow\left(x^2-4xy+4y^2\right)+4x-8y+4+y^2-16=0\)
\(\Leftrightarrow\left(x-2y\right)^2+4\left(x-2y\right)+4+y^2=16\)
\(\Leftrightarrow\left(x-2y+2\right)^2+y^2=16\)
Vì \(\left(x+2y+2\right)^2+y^2\) là tổng hai số chính phương
nên \(\left(\left(x+2y+2\right)^2;y^2\right)\in\left\{0;16\right\}\)xét 2 TH là ra
Tìm nghiệm nguyên của phương trình:
\(3\left(x^2+xy+y^2\right)=x+8y\)
3(x2 + xy + y2) = x + 8y
<=> 3x2 + (3y - 1)x + (3y2 - 8y) = 0
Để phương trình theo nghiệm x có nghiệm thì
∆ = (3y - 1)2 - 4.3.(3y2 - 8y) \(\ge\)0
<=> - 27y2 + 90y + 1 \(\ge\)0
<=> - 0,011 \(\le\)y \(\le\)3,344
Mà vì y nguyên nên
\(\Rightarrow0\le y\le3\)
\(\Rightarrow\)y = (0, 1, 2, 3)
\(\Rightarrow\)x = (...)
Cặp nào nguyên thì nhận. Không nguyên thì loại
Tìm nghiệm nguyên x;y của phương trình: \(x^2y^2-x^2-8y^2=2xy\)
=> (x2 - 8).y2 - 2xy - x2 = 0 (*)
Tính \(\Delta\)' = (-x)2 - (x2 - 8 ). (-x2) = x4 - 7x2
Để x nguyên <=> \(\Delta\)' là số cính phương <=> x4 - 7x2 = k2 ( k nguyên)
=> 4x4 - 28x2 = 4k2 => (2x2 -14)2 = (2k)2 + 196
=> (2x2 - 14)2 - (2k)2 = 196
=> (2x2 - 14 - 2k). (2x2 - 14 + 2k) = 196 = 14.14 = (-14). (-14) = 2. 98 = (-2). (-98)
Nhận xét: 2x2 - 14 - 2k; 2x2 - 14 + 2k chẵn
+) Th1 : 2x2 - 14 - 2k = - 14; 2x2 - 14 + 2k = -14
=> k = 0 => x2 = 0 => x = 0 . thay vào (*) => y
Giá trị y nguyên là các giá trị thoa mãn
các trường hợp còn lại : tương tự
+) Th2: 2x2 - 14 - 2k = 14; 2x2 - 14 + 2k = 14:
+) Th3: 2x2 - 14 - 2k = 2; 2x2 - 14 + 2k = 98
+) Th4: 2x2 - 14 - 2k = - 2; 2x2 - 14 + 2k = -98
Cho phương trình: \(x^2-3y^2+2xy-2x-10y+4\)
a) Tìm nghiệm \(\left(x;y\right)\) của phương trình thỏa mãn: \(x^2+y^2=10\)
b) Tìm nghiệm nguyên của phương trình đã cho
Phương trình nào trong các phương trình sau đây là phương trình đường tròn? Tìm tọa độ tâm và bán kính của đường tròn đó.
a) \({x^2} + {y^2} - 6x - 8y + 21 = 0\)
b) \({x^2} + {y^2} - 2x + 4y + 2 = 0\)
c) \({x^2} + {y^2} - 3x + 2y + 7 = 0\)
d) \(2{x^2} + 2{y^2} + x + y - 1
a) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = 3,b = 4,c = 21\)
Ta có \({a^2} + {b^2} - c = 9 + 16 - 21 = 4 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I(3;4)\) và có bán kính \(R = \sqrt 4 = 2\)
b) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = 1,b = - 2,c = 2\)
Ta có \({a^2} + {b^2} - c = 1 + 4 - 2 = 3 > 0\). Vậy đây là phương trình đường tròn có tâm là \(I(1; - 2)\) và có bán kính \(R = \sqrt 3 \)
c) Phương trình đã cho có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) với \(a = \frac{3}{2},b = - 1,c = 7\)
Ta có \({a^2} + {b^2} - c = \frac{9}{4} + 1 - 7 = - \frac{{15}}{4} < 0\). Vậy đây không là phương trình đường tròn.
d) Phương trình không có dạng \({x^2} + {y^2} - 2ax - 2by + c = 0\) nên phương trình đã cho không là phương trình đường tròn.
Tìm nghiệm nguyên của phương trình x^2+2x+2-125y=0
tìm nghiệm nguyên dương của phương trình
\(x^2-y^2+2x-4y-10=0\)
\(x^2-y^2+2x-4y-10=0\)
\(\Leftrightarrow x^2+2x+1-\left(y^2+y+9\right)=0\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+2\right)^2-5=0\)
\(\Leftrightarrow\left(x+1\right)^2-\left(y+1\right)^2=5\)
\(\Leftrightarrow\left(x+1+y+2\right)\left(x+1+y-2\right)=5\)
\(\Leftrightarrow\left(x+y+1+2\right)\left(x-y-2-1\right)=5\)
\(\Leftrightarrow\left(x+y+3\right)\left(x-y-1\right)=5\)
Ta có bảng GT:
x+y+3 | 1 | 5 | -1 | -5 |
x-y-1 | 5 | 1 | -5 | -1 |
x | 2 | 2 | -4 | -4 |
y | -4 | 0 | 0 | -4 |
Vậy (x,y)= (2;4) (2;0) (4;0);(-4;4)
x,y nguyên dương là:
=> Nghiệm của nguyên dương PT là: (x,y)=(2,0)
Tìm nghiệm nguyên dương (x;y) của phương trình \(x^6-2x^3y-x^4+y^2+7=0\)
\(x^6-2x^3y-x^4+y^2+7=0\)
\(\Leftrightarrow\left(x^6-2x^3y+y^2\right)-x^4+7=0\)
\(\Leftrightarrow\left(x^3-y\right)^2-\left(x^2\right)^2=-7\)
\(\Leftrightarrow\left(x^3-y+x^2\right)\left(x^3-y-x^2\right)=-7\)
Liệt kê ước 7 ra rồi lm đc