Tìm x biết:
\(\frac{1+2a}{18}\)=\(\frac{1+4a}{24}\)=\(\frac{1+6a}{6x}\)
CM các đẳng thức LG sau:
1)\(\left(cos^4a+sin^4a\right)-2\left(cos^6a+sin^6a\right)=1\)
2) \(\frac{sin^2a+cos^2a}{1+2sina.cosa}=\frac{tana-1}{tana+1}\)
3) \(sin^4a+cos^4a-sin^6a-cos^6a=sin^2a.cos^2a\)
4) \(\frac{cosa}{1+sina}+tana=\frac{1}{cosa}\)
5) \(\frac{tana}{a-tan^2a}.\frac{cot^2a-1}{cota}=1\)
cái câu 1 kia lạ thật, phần phía trc có ngoặc thì phải nhân vs hạng tử nào đó chứ nhỉ? Và mk tính ra kq là \(-\cos^22\alpha\)
\(VT=\cos^4\alpha+\sin^4\alpha-2\cos^6\alpha-2\sin^6\alpha\)
\(=\sin^4\alpha\left(1-2\sin^2\alpha\right)-\cos^4\alpha\left(2\cos^2\alpha-1\right)\)
\(=\sin^4\alpha.\cos2\alpha-\cos^4\alpha.\cos2\alpha\)
\(=\cos2\alpha\left(\sin^2\alpha.\sin^2\alpha-\cos^4\alpha\right)\)
\(=\cos2\alpha.\left[\left(1-\cos^2\alpha\right)^2-\cos^4\alpha\right]\)
\(=\cos2\alpha.\left(1-2\cos^2\alpha\right)\)
\(=-\cos^22\alpha\)
2/ \(VT=\frac{1-\cos^2\alpha+\cos^2\alpha}{1+\sin2\alpha}=\frac{1}{1+\sin2\alpha}\)
\(VP=\frac{\frac{\sin\alpha}{\cos\alpha}-1}{\frac{\sin\alpha}{\cos\alpha}+1}=\frac{\frac{\sin\alpha-\cos\alpha}{\cos\alpha}}{\frac{\sin\alpha+\cos\alpha}{\cos\alpha}}=\frac{\sin\alpha-\cos\alpha}{\sin\alpha+\cos\alpha}\)
hmm, câu 2 có vẻ vô lí, bn thử nhân chéo lên mà xem, nó ko ra KQ = nhau đâu
1)
\((\cos^4a+\sin ^4a)-2(\cos^6a+\sin ^6a)=(\cos ^4a+\sin ^4a)-2(\cos ^2a+\sin ^2a)(\cos ^4a-\cos ^2a\sin ^2a+\sin ^4a)\)
\(=(\cos ^4a+\sin ^4a)-2(\cos ^4a-\cos ^2a\sin ^2a+\sin ^4a)\)
\(=-(\cos ^4a-2\sin ^2a\cos ^2a+\sin ^4a)=-(\cos ^2a-\sin ^2a)^2=-\cos ^22a\)
(bạn xem lại đề. Nếu thay $(\cos ^4a+\sin ^4a)$ thành $3(\cos ^4a+\sin ^4a)$ thì kết quả thu được là $(\cos ^2a+\sin ^2a)^2=1$ như yêu cầu)
2) Sửa đề:
\(\frac{\sin ^2a-\cos ^2a}{1+2\sin a\cos a}=\frac{(\sin a-\cos a)(\sin a+\cos a)}{\sin ^2a+\cos ^2a+2\sin a\cos a}=\frac{(\sin a-\cos a)(\sin a+\cos a)}{(\sin a+\cos a)^2}\)
\(=\frac{\sin a-\cos a}{\sin a+\cos a}=\frac{\frac{\sin a}{\cos a}-1}{\frac{\sin a}{\cos a}+1}=\frac{\tan a-1}{\tan a+1}\)
Bạn lưu ý viết đề bài chuẩn hơn.
3)
\(\sin ^4a+\cos ^4a-\sin ^6a-\cos ^6a=\sin ^4a+\cos ^4a-[(\sin ^2a)^3+(\cos ^2a)^3]\)
\(=\sin ^4a+\cos ^4a-(\sin ^2a+\cos ^2a)(\sin ^4a-\sin ^2a\cos ^2a+\cos ^4a)\)
\(=\sin ^4a+\cos ^4a-(\sin ^4a-\sin ^2a\cos ^2a+\cos ^4a)\)
\(=\sin ^2a\cos ^2a\) (đpcm)
4)
\(\frac{\cos a}{1+\sin a}+\tan a=\frac{\cos a}{1+\sin a}+\frac{\sin a}{\cos a}=\frac{\cos ^2a+\sin^2a+\sin a}{\cos a(1+\sin a)}=\frac{1+\sin a}{\cos a(1+\sin a)}=\frac{1}{\cos a}\)
5)
\(\frac{\tan a}{1-\tan ^2a}.\frac{\cot ^2a-1}{\cot a}=\frac{\tan a}{(tan a\cot a)^2-\tan ^2a}.\frac{\cot ^2a-1}{\cot a}\)
\(=\frac{\tan a}{\tan ^2a(\cot ^2a-1)}.\frac{\cot ^2a-1}{\cot a}=\frac{1}{\tan a\cot a}=\frac{1}{1}=1\)
-----------------------------------
Mấu chốt của các bài này là bạn sử dụng 2 công thức sau:
1. \(\sin ^2x+\cos^2x=1\)
2. \(\tan x.\cot x=1\)
Tìm x biết \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
Tìm x biết \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
ta có: \(\frac{1+2y}{18}=\frac{1+4y}{24}\)
\(\Rightarrow\left(1+2y\right).24=18.\left(1+4y\right)\)
\(24+48y=18+72y\)
\(48y-72y=18-24\)
\(-24y=-6\)
\(y=\frac{1}{4}\)
thay vào \(\frac{1+4.\frac{1}{4}}{24}=\frac{1+6.\frac{1}{4}}{6x}\)
\(\frac{1+1}{24}=\frac{1+\frac{3}{2}}{6x}\)
\(\frac{1}{12}=\frac{5}{2}:6x\)
\(6x=\frac{5}{2}:\frac{1}{12}\)
\(6x=30\)
\(x=30:6\)
\(x=5\)
KL: x =5; y = 1/4
Tìm x biết rằng ; \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
\(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}=\frac{1+2y+1+6y}{18+6x}=\frac{2+8y}{6\left(3+x\right)}=\frac{1+4y}{3\left(3+x\right)}\)
\(\Rightarrow3\left(3+x\right)=24\)\(\Rightarrow3+x=8\)\(\Rightarrow x=5\)
Vậy \(x=5\)
Ta có: \(\frac{1+2y}{18}=\frac{1+4y}{24}\)
\(\Leftrightarrow24\left(1+2y\right)=18\left(1+4y\right)\)
\(\Leftrightarrow24+48y=18+72y\)
\(\Leftrightarrow24y-6=0\Leftrightarrow y=\frac{1}{4}\)
\(\Rightarrow\frac{1+2y}{18}=\frac{1+6y}{6x}\Leftrightarrow\frac{1+\frac{1}{2}}{18}=\frac{1+\frac{3}{2}}{6x}\)
\(\Leftrightarrow x=5\)
Vậy x = 5 và \(y=\frac{1}{4}\)
Tìm x biết:
\(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
1 + 2y/18=1 + 6y/6x=1 + 2y + 1 + 6y/18 + 6x=2 + 8y/18 + 6x=2.(1 + 4y)/2.(9 + 3x)=1 + 4y/9 + 3x
Suy ra:1 + 4y/9 + 3x=1 + 4y/24=>9 + 3x=24
3x=15
x=5
Tìm x biết rằng \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
\(\Rightarrow\)\(\frac{1+2y+1+4y+1+6y}{18+24+6x}\)=\(\frac{\left(1+1+1\right)+2y+4y+6y}{6\left(3+4+x\right)}=\frac{y\left(2+4+6\right)+3}{6\left(3+4+x\right)}=\frac{3+y.12}{6\left(7+x\right)}\)
=\(\frac{3\left(1+4y\right)}{3.2\left(7+x\right)}=\frac{1+4y}{14+2x}\)
\(\Rightarrow\)\(\frac{1}{14}=\frac{2y}{x}\Rightarrow x=14.2y=28y\)
\(\frac{x}{y}=28\)
Tìm x, biết rằng : \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
Ta có: \(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}=\frac{1+2y+1+6y}{18+6x}=\frac{2\left(1+4y\right)}{6\left(x+3\right)}=\frac{1+4y}{3x+9}\)
\(=>\frac{1+4y}{24}=\frac{1+4y}{3x+9}\)\(=>3x+9=24\)
<=>3x=15
<=>x=5
Vậy x có giá trị bằng 5
Chúc bạn học tốt!
Tìm x, y biết
\(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
Ta có: 1 + 2y/18 = 2.(1+2y)/2.18 = 2+4y/36
Sử dụng tc dãy tỉ số bằng nhau ta có:
2+4y/36 = 1+4y/24 = 2+4y-1-4y/36-24 = 1/12
Do 1+2y/18 = 1/12=> y = 1/4
1+6y/6x = 1/12=> x = 5
Vậy x = 5; y = 1/4
Tìm x biết rằng:
\(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta có:
\(\frac{1+2y}{18}=\frac{1+4y}{24}=\frac{1+6y}{6x}=\frac{1+2y+1+6y}{18+6x}\)
\(=\frac{2\left(1+4y\right)}{2\left(3x+9\right)}=\frac{1+4y}{3x+9}\)
\(\Rightarrow\frac{1+4y}{24}=\frac{1+4y}{3x+9}\)
\(\Rightarrow3x+9=24\)
\(\Rightarrow x+3=24:3=8\)
\(\Rightarrow x=5\)
\(\frac{1+2y}{18}=\frac{2+4y}{36}=\frac{1+4y}{24}=\frac{2+4y-\left(1+4y\right)}{36-24}=\frac{1}{12}\)
\(\Rightarrow\frac{1+4y}{24}=\frac{1}{12}\Rightarrow4y+1=2\Rightarrow y=\frac{1}{4}\)
\(\Rightarrow\frac{1+6y}{6x}=\frac{1}{12}\Rightarrow x=2\cdot\left(1+6y\right)=2+12y=2+12\cdot\frac{1}{4}=5\)
Vậy x = 5.