Những câu hỏi liên quan
Thảo Nguyên Xanh
Xem chi tiết
alibaba nguyễn
11 tháng 10 2017 lúc 15:49

Ta có:

\(P=\frac{1}{\sqrt{a^2-ab+b^2}}+\frac{1}{\sqrt{b^2-bc+c^2}}+\frac{1}{\sqrt{c^2-ca+a^2}}\)

\(=\frac{1}{\sqrt{\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2}}+\frac{1}{\sqrt{\frac{1}{4}\left(b+c\right)^2+\frac{3}{4}\left(b-c\right)^2}}+\frac{1}{\sqrt{\frac{1}{4}\left(c+a\right)^2+\frac{3}{4}\left(c-a\right)^2}}\)

\(\le2\left(\frac{1}{a+b}+\frac{1}{b+c}+\frac{1}{c+a}\right)\)

\(\le2.\frac{1}{4}.\left(\frac{1}{a}+\frac{1}{b}+\frac{1}{b}+\frac{1}{c}+\frac{1}{c}+\frac{1}{a}\right)\)

\(=\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=3\)

Bình luận (0)
Lê Huỳnh
Xem chi tiết
Mr Lazy
12 tháng 4 2016 lúc 23:07

\(a^2-ab+b^2=\frac{1}{4}\left(a+b\right)^2+\frac{3}{4}\left(a-b\right)^2\ge\frac{1}{4}\left(a+b\right)^2\)

\(\frac{1}{\sqrt{a^2-ab+b^2}}\le\frac{2}{a+b}\le\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)

Bình luận (0)
lê thị thu hà
Xem chi tiết
Yim Yim
25 tháng 5 2018 lúc 11:45

\(c+ab=\left(a+b+c\right)c+ab=ac+cb+c^2+ab=\left(a+c\right)\left(b+c\right)\)

Tương tự : \(a+bc=\left(a+b\right)\left(a+c\right);c+ab=\left(c+a\right)\left(c+b\right)\)

\(P=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\)

áp dụng bất đẳng tức cauchy :

\(\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\le\frac{1}{2}\left(\frac{a}{c+a}+\frac{b}{c+b}\right)\)

\(\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)

\(\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\le\frac{1}{2}\left(\frac{c}{b+c}+\frac{a}{b+a}\right)\)

cộng vế theo vế 

\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{c+b}+\frac{b}{a+b}+\frac{c}{a+c}+\frac{c}{b+c}+\frac{a}{b+a}\right)\)

\(\Leftrightarrow P\le\frac{1}{2}\left(\frac{a+c}{a+c}+\frac{b+c}{b+c}+\frac{a+b}{a+b}\right)=\frac{1}{2}\cdot3=\frac{3}{2}\)

dấu "=" xảy ra khi a=b=c=1/3

Bình luận (0)
Tran Le Khanh Linh
24 tháng 8 2020 lúc 20:19

Có a+b+c=1 => c=(a+b+c).c=ac+bc+c2

\(\Rightarrow c+ab=ac+bc+c^2+ab=a\left(b+c\right)+c\left(b+c\right)=\left(b+c\right)\left(a+c\right)\)

\(\Rightarrow\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{\left(c+a\right)\left(c+b\right)}}\le\frac{\frac{a}{c+b}+\frac{b}{c+b}}{2}\)

Tương tự ta có \(\hept{\begin{cases}a+bc=\left(a+b\right)\left(a+c\right)\\b+ac=\left(b+a\right)\left(b+c\right)\end{cases}\Leftrightarrow\hept{\begin{cases}\sqrt{\frac{bc}{a+bc}}=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{b}{a+b}+\frac{c}{a+c}}{2}\\\sqrt{\frac{ca}{b+ca}}=\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\le\frac{\frac{c}{b+c}+\frac{a}{b+a}}{2}\end{cases}}}\)

\(\Rightarrow P\le\frac{\frac{b}{a+b}+\frac{c}{c+a}+\frac{c}{b+c}+\frac{a}{a+b}+\frac{a}{c+a}+\frac{b}{c+b}}{2}\)\(=\frac{\frac{a+c}{a+c}+\frac{c+b}{c+b}+\frac{a+b}{a+b}}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
Xem chi tiết
Lê Tài Bảo Châu
10 tháng 1 2020 lúc 22:34

tham khảo

https://olm.vn/hoi-dap/detail/106887527253.html

Bình luận (0)
 Khách vãng lai đã xóa
Phùng Gia Bảo
Xem chi tiết
Kiệt Nguyễn
25 tháng 4 2020 lúc 15:21

Xét biểu thức \(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\)

\(=\frac{\left(a+2\right)\left(b+2\right)+\left(b+2\right)\left(c+2\right)+\left(c+2\right)\left(a+2\right)}{\left(a+2\right)\left(b+2\right)\left(c+2\right)}\)

\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{abc+2\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)

\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{\left(abc+ab+bc+ca\right)+\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)

\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{4+\left(ab+bc+ca\right)+4\left(a+b+c\right)+8}\)(Do \(ab+bc+ca+abc=4\)theo giả thiết)

\(=\frac{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}{\left(ab+bc+ca\right)+4\left(a+b+c\right)+12}=1\)(***)

Với x,y dương ta có 2 bất đẳng thức phụ sau:

\(2\left(x^2+y^2\right)\ge\left(x+y\right)^2\)(*)

\(\frac{1}{x+y}\le\frac{1}{4}\left(\frac{1}{x}+\frac{1}{y}\right)\)(**)

Áp dụng (*) và (**), ta có:

\(\frac{1}{\sqrt{2\left(a^2+b^2\right)}+4}\le\frac{1}{a+b+4}=\frac{1}{\left(a+2\right)+\left(b+2\right)}\)

\(\le\frac{1}{4}\left(\frac{1}{a+2}+\frac{1}{b+2}\right)\)(1)

Tương tự ta có: \(\frac{1}{\sqrt{2\left(b^2+c^2\right)}+4}\le\frac{1}{4}\left(\frac{1}{b+2}+\frac{1}{c+2}\right)\)(2)

\(\frac{1}{\sqrt{2\left(c^2+a^2\right)}+4}\le\frac{1}{4}\left(\frac{1}{c+2}+\frac{1}{a+2}\right)\)(3)

Cộng từng vế của các bất đẳng thức (1), (2), (3), ta được:

\(P\le\frac{1}{2}\left(\frac{1}{a+2}+\frac{1}{b+2}+\frac{1}{c+2}\right)=\frac{1}{2}\)(theo (***))

Đẳng thức xảy ra khi \(a=b=c\)

Bình luận (0)
 Khách vãng lai đã xóa
Kiệt Nguyễn
25 tháng 4 2020 lúc 15:26

Bạn bổ sung cho mình dòng cuối là a = b = c = 1 nhé!

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Thị Minh Nguyệt
Xem chi tiết
alibaba nguyễn
29 tháng 6 2017 lúc 16:53

Đặt: \(a=\frac{1}{x};b=\frac{1}{y};c=\frac{1}{z}\) 

\(\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{xyz}\)

\(\Leftrightarrow xy+yz+zx=1\)

Ta có:

\(S=\frac{\frac{1}{x}}{\sqrt{\frac{1}{y}.\frac{1}{z}\left(1+\frac{1}{x^2}\right)}}+\frac{\frac{1}{y}}{\sqrt{\frac{1}{z}.\frac{1}{x}\left(1+\frac{1}{y^2}\right)}}+\frac{\frac{1}{z}}{\sqrt{\frac{1}{x}.\frac{1}{y}\left(1+\frac{1}{z^2}\right)}}\)

\(=\sqrt{\frac{yz}{1+x^2}}+\sqrt{\frac{zx}{1+y^2}}+\sqrt{\frac{xy}{1+z^2}}\)

\(=\sqrt{\frac{yz}{xy+yz+zx+x^2}}+\sqrt{\frac{zx}{xy+yz+zx+y^2}}+\sqrt{\frac{xy}{xy+yz+zx+z^2}}\)

\(=\sqrt{\frac{yz}{\left(x+y\right)\left(x+z\right)}}+\sqrt{\frac{zx}{\left(y+x\right)\left(y+z\right)}}+\sqrt{\frac{xy}{\left(z+x\right)\left(z+y\right)}}\)

\(\le\frac{1}{2}.\left(\frac{y}{x+y}+\frac{z}{x+z}+\frac{z}{y+z}+\frac{x}{x+y}+\frac{x}{z+x}+\frac{y}{z+y}\right)\)

\(=\frac{1}{2}.\left(1+1+1\right)=\frac{3}{2}\)

Dấu = xảy ra khi \(x=y=z=\sqrt{3}\)

Bình luận (0)
alibaba nguyễn
29 tháng 6 2017 lúc 16:53

Nhầm dấu = xảy ra khi \(a=b=c=\sqrt{3}\) chứ.

Bình luận (0)
công hạ vy
Xem chi tiết
FL.Han_
Xem chi tiết
Nguyễn Minh Đăng
29 tháng 7 2020 lúc 17:10

Ta có: \(a+b+c=1\Leftrightarrow a^2+ab+ca=a\)

Thay vào ta có: \(\sqrt{\frac{bc}{a+bc}}=\sqrt{\frac{bc}{a^2+ab+ca+bc}}=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\)

Áp dụng Cauchy ngược: \(\sqrt{\frac{bc}{a+bc}}=\sqrt{\frac{bc}{a^2+ab+ca+bc}}\le\frac{\frac{b}{a+b}+\frac{c}{a+c}}{2}\)

Tương tự ta CM được: \(\sqrt{\frac{ab}{c+ab}}\le\frac{\frac{a}{c+a}+\frac{b}{c+b}}{2}\)

                                     \(\sqrt{\frac{ca}{b+ca}}\le\frac{\frac{c}{b+c}+\frac{a}{b+a}}{2}\)

Cộng vế 3 BĐT trên ta được:

\(P\le\frac{\frac{a}{c+a}+\frac{b}{c+b}+\frac{b}{a+b}+\frac{c}{a+c}+\frac{c}{b+c}+\frac{a}{b+a}}{2}\)

\(=\frac{\left(\frac{a}{c+a}+\frac{c}{a+c}\right)+\left(\frac{b}{c+b}+\frac{c}{b+c}\right)+\left(\frac{a}{b+a}+\frac{b}{a+b}\right)}{2}\)

\(=\frac{1+1+1}{2}=\frac{3}{2}\)

Dấu "=" xảy ra khi: \(a=b=c=\frac{1}{3}\)

Vậy \(Max_P=\frac{3}{2}\Leftrightarrow a=b=c=\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
Khánh Ngọc
29 tháng 7 2020 lúc 17:24

Ta có :

\(c+ab=\left(a+b+c\right)c+ab=ac+ac+c^2+ab=\left(a+c\right)\left(b+c\right)\)

Tương tự :  \(a+bc=\left(a+b\right)\left(a+c\right);c+ab=\left(c+b\right)\left(c+a\right)\)

 \(\Rightarrow P=\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}+\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}+\sqrt{\frac{ca}{\left(c+a\right)\left(c+b\right)}}\)

Áp dụng BĐT cauchy :

\(\sqrt{\frac{ab}{\left(a+c\right)\left(b+c\right)}}\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}\right)\)

\(\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{1}{2}\left(\frac{b}{a+b}+\frac{c}{a+c}\right)\)

\(\sqrt{\frac{ca}{\left(c+b\right)\left(c+a\right)}}\le\frac{1}{2}\left(\frac{c}{c+b}+\frac{a}{c+a}\right)\)

Cộng vế với vế :

\(\Rightarrow P\le\frac{1}{2}\left(\frac{a}{a+c}+\frac{b}{b+c}+\frac{b}{a+b}+\frac{c}{a+c}+\frac{c}{c+b}+\frac{a}{c+a}\right)\)

\(\Leftrightarrow P\le\frac{1}{2}\left(\frac{a+c}{a+b}+\frac{b+c}{b+c}+\frac{a+b}{a+b}\right)=\frac{1}{2}.3=\frac{3}{2}\)

Dấu "=" xảy ra \(\Leftrightarrow a=b=c=\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
Tran Le Khanh Linh
29 tháng 7 2020 lúc 19:42

có a+b+c=1 => c=(a+b+c).c=ac + bc + c2

=> c+ab=ac+bc+c2+ab=a(c+b)+c(b+c)=(c+a)(c+b)

=> \(\sqrt{\frac{ab}{c+ab}}=\sqrt{\frac{ab}{\left(a+c\right)\left(c+b\right)}}\le\frac{\frac{a}{c+a}+\frac{b}{b+c}}{2}\)

tương tự có \(\hept{\begin{cases}a+bc=\left(a+b\right)\left(a+c\right)\\b+ca=\left(b+c\right)\left(b+a\right)\end{cases}\Rightarrow\sqrt{\frac{bc}{a+bc}}=\sqrt{\frac{bc}{\left(a+b\right)\left(a+c\right)}}\le\frac{\frac{b}{a+b}+\frac{c}{a+c}}{2}}\)và \(\sqrt{\frac{ca}{b+ca}}=\sqrt{\frac{ca}{\left(b+c\right)\left(b+a\right)}}\le\frac{\frac{c}{b+c}+\frac{a}{b+a}}{2}\)

\(\Rightarrow P\le\frac{\frac{a}{c+a}+\frac{b}{b+c}+\frac{b}{a+b}+\frac{c}{c+a}+\frac{a}{a+b}}{2}=\frac{\frac{a+c}{a+c}+\frac{c+b}{c+b}+\frac{b+a}{b+a}}{2}=\frac{3}{2}\)

dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

vậy maxP=\(\frac{3}{2}\)đạt được khi a=b=c=\(\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
Đặng Noan ♥
Xem chi tiết
Phan Gia Huy
3 tháng 2 2020 lúc 21:32

\(3-P=1-\frac{x}{x+1}+1-\frac{y}{y+1}+1-\frac{z}{z+1}\)

\(=\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}\ge\frac{9}{x+y+z+3}=\frac{9}{1+3}=\frac{9}{4}\)

\(\Rightarrow P\le\frac{3}{4}\)

Dấu "=" xảy ra tại \(x=y=z=\frac{1}{3}\)

Bình luận (0)
 Khách vãng lai đã xóa
tth_new
4 tháng 2 2020 lúc 9:02

2/\(LHS\ge\frac{\left(a+b+c\right)^2}{a+b+c+\sqrt[3]{bc}+\sqrt[3]{ca}+\sqrt[3]{ab}}\)

\(\ge\frac{\left(a+b+c\right)^2}{a+b+c+\frac{1+b+c}{3}+\frac{1+c+a}{3}+\frac{1+a+b}{3}}=\frac{3}{2}\)

Bình luận (0)
 Khách vãng lai đã xóa
Kudo Shinichi
4 tháng 2 2020 lúc 15:40

Bài 1 : 

\(P=\frac{x}{x+1}+\frac{y}{y+1}+\frac{z}{z+1}\)

Thay \(x+y+z=1\)vào biểu thức 

\(\Rightarrow P=\frac{x}{2x+y+z}+\frac{y}{x+2y+z}+\frac{z}{x+y+2z}\)

Áp dụng bất đẳng thức \(\frac{1}{a+b}\le\frac{1}{4}\left(\frac{1}{a}+\frac{1}{b}\right)\forall a,b>0\)

\(\Rightarrow\hept{\begin{cases}\frac{x}{2x+y+z}=\frac{x}{x+y+x+z}\le\frac{x}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)\\\frac{y}{x+2y+z}=\frac{y}{x+y+y+z}\le\frac{y}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\\\frac{z}{x+y+2z}=\frac{z}{x+z+y+z}\le\frac{z}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\end{cases}}\)

\(\Rightarrow VT\le\frac{x}{4}\left(\frac{1}{x+y}+\frac{1}{x+z}\right)+\frac{y}{4}\left(\frac{1}{x+y}+\frac{1}{y+z}\right)\)

\(+\frac{z}{4}\left(\frac{1}{x+z}+\frac{1}{y+z}\right)\)

\(\Rightarrow VT\le\frac{x}{4\left(x+y\right)}+\frac{y}{4\left(x+y\right)}+\frac{x}{4\left(x+z\right)}+\frac{z}{4\left(x+z\right)}+\frac{y}{4\left(y+z\right)}\)

\(+\frac{z}{4\left(y+z\right)}\)

\(\Rightarrow VT\le\frac{x+y}{4\left(x+y\right)}+\frac{x+z}{4\left(x+z\right)}+\frac{y+z}{4\left(y+z\right)}\)

\(\Rightarrow VT\le\frac{1}{4}+\frac{1}{4}+\frac{1}{4}=\frac{3}{4}\)

\(\Rightarrow P\le\frac{3}{4}\)

Vậy \(P_{max}=\frac{3}{4}\)

Dấu " = " xảy ra khi \(x=y=z\)

Chúc bạn học tốt !!!

Bình luận (0)
 Khách vãng lai đã xóa