Chứng minh rằng:
\(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)
Cho x,y,z>0. Chứng minh rằng:
\(\left(\frac{x}{x+y}\right)^2+\left(\frac{y}{y+z}\right)^2+\left(\frac{z}{z+x}\right)^2\ge\frac{3}{4}\)
(Croatia 2004) Cho ba số thực dương x, y, z. Chứng minh rằng:
\(\frac{x^2}{\left(x+y\right)\left(x+z\right)}+\frac{y^2}{\left(y+z\right)\left(y+x\right)}+\frac{z^2}{\left(z+x\right)\left(z+y\right)}\ge\frac{3}{4}\)
Động não tí đi Quỳnh, a thấy bài này cũng không khó.
Bài dễ mừ, có phải Croatia thật ko vậy :)) (viết đề bị nhầm, là x,y,z dương chứ :))
Áp dụng Cauchy-Schwarz dạng cộng mẫu số:
\(\frac{x^2}{\left(x+y\right)\left(x+z\right)}+\frac{y^2}{\left(y+z\right)\left(y+x\right)}+\frac{z^2}{\left(z+x\right)\left(z+y\right)}\ge\)
\(\frac{\left(x+y+z\right)^2}{\left(x+y\right)\left(x+z\right)+\left(y+z\right)\left(y+x\right)+\left(z+x\right)\left(z+y\right)}=\frac{\left(x+y+z\right)^2}{x^2+y^2+z^2+3\left(xy+yz+zx\right)}\)
\(=\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}\)
Xét \(xy+yz+zx\le\frac{\left(x+y+z\right)^2}{3}\Rightarrow\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\left(xy+yz+zx\right)}\ge\frac{\left(x+y+z\right)^2}{\left(x+y+z\right)^2+\frac{\left(x+y+z\right)^2}{3}}\)
\(=\frac{\left(x+y+z\right)^2}{\frac{4}{3}\left(x+y+z\right)^2}=\frac{3}{4}\)
Dấu bằng xảy ra khi và chỉ khi x=y=z, Xong! :))
Cho x,y,z là các số thực không âm thỏa mãn điều kiện \(x\ge y\ge z\).Chứng minh rằng:
\(\frac{xy+yz+zx}{x^2+xy+y^2}\ge\frac{\left(x+z\right)\left(y+z\right)}{\left(x+z\right)^2+\left(x+z\right)\left(y+z\right)+\left(y+z\right)^2}\)
chứng minh rằng \(\frac{x^3}{z+x^2}+\frac{y^3}{x+y^2}+\frac{z^3}{y+z^2}\ge\frac{1}{2}\left(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\right)\)
Cho 3 số thực dương x, y, z thỏa mãn : \(x+y\le z\)
Chứng minh rằng : \(\left(x^2+y^2+z^2\right)\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\ge\frac{27}{2}\)
Theo AM - GM và Bunhiacopski ta có được
\(x^2+y^2\ge\frac{\left(x+y\right)^2}{2};\frac{1}{x^2}+\frac{1}{y^2}\ge\frac{2}{xy}\ge\frac{8}{\left(x+y\right)^2}\)
Khi đó \(LHS\ge\left[\frac{\left(x+y\right)^2}{2}+z^2\right]\left[\frac{8}{\left(x+y\right)^2}+\frac{1}{z^2}\right]\)
\(\)\(=\left[\frac{1}{2}+\left(\frac{z}{x+y}\right)^2\right]\left[8+\left(\frac{x+y}{z}\right)^2\right]\)
Đặt \(t=\frac{z}{x+y}\ge1\)
Khi đó:\(LHS\ge\left(\frac{1}{2}+t^2\right)\left(8+\frac{1}{t^2}\right)=8t^2+\frac{1}{2t^2}+5\)
\(=\left(\frac{1}{2t^2}+\frac{t^2}{2}\right)+\frac{15t^2}{2}+5\ge\frac{27}{2}\)
Vậy ta có đpcm
Ta có:
\(VT-VP=\frac{\left(x^2+y^2\right)\left(\Sigma xy\right)\left(\Sigma x\right)\left[z\left(x+y\right)-xy\right]\left(z-x-y\right)}{x^2y^2z^2\left(x+y\right)^2}+\frac{\left(x-y\right)^2\left(2x+y\right)^2\left(x+2y\right)^2}{2x^2y^2\left(x+y\right)^2}\ge0\)
Vì \(z\left(x+y\right)-xy\ge\left(x+y\right)^2-xy\ge4xy-xy>0\)
Chứng minh rằng\(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)
Chứng minh:
Ta có:
\(\left(x-y\right)^2\ge0\Rightarrow x^2+y^2-2xy\ge0\Rightarrow x^2+y^2\ge2xy\)
\(\left(y-z\right)^2\ge0\Rightarrow y^2+z^2-2yz\ge0\Rightarrow y^2+z^2\ge2yz\)
\(\left(x-z\right)^2\ge0\Rightarrow x^2+z^2-2xz\ge0\Rightarrow x^2+z^2\ge2xz\)
Cộng vế với vế, ta được:
\(2\left(x^2+y^2+z^2\right)\ge2\left(xy+yz+zx\right)\)
\(\Rightarrow3\left(x^2+y^2+z^2\right)\ge x^2+y^2+z^2+2\left(xy+yz+zx\right)\)
\(\Rightarrow x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)(đpcm)
\(x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\)
\(\Leftrightarrow x^2+y^2+z^2-\frac{1}{3}\cdot\left(x+y+z\right)^2\ge0\)
\(\Leftrightarrow x^2+y^2+z^2-\frac{1}{3}\left(x^2+y^2+z^2+2xy+2yz+2xz\right)\ge0\)
\(\Leftrightarrow x^2+y^2+z^2-\frac{1}{3}\left(x^2+y^2+z^2\right)-\frac{2}{3}\left(xy+yz+zx\right)\ge0\)
\(\Leftrightarrow\frac{2}{3}\left(x^2+y^2+z^2\right)-\frac{2}{3}\left(xy+yz+xz\right)\ge0\)
\(\Leftrightarrow\frac{2}{3}\left(x^2+y^2+z^2-xy-yz-xz\right)\ge0\) (1)
Ta cần chứng minh : \(x^2+y^2+z^2-xy-yz-xz\ge0\)
\(\Leftrightarrow2x^2+2y^2+2z^2-2xy-2yz-2xz\ge0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(y-z\right)^2+\left(x-z\right)^2\ge0\) (luôn đúng)
=> bđt (1) đúng
\(\Rightarrow x^2+y^2+z^2\ge\frac{1}{3}\left(x+y+z\right)^2\) (đpcm)
Cho các số dương x, y, z thỏa mãn: \(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}=3\)
Chứng minh rằng: \(\frac{1}{\left(2x+y+z\right)^2}+\frac{1}{\left(2y+z+x\right)^2}+\frac{1}{\left(2z+x+y\right)^2}\ge\frac{3}{16}\)
Chứng minh rằng : \(x^2+y^2+z^2\ge\frac{\left(x+y+z\right)^2}{3}\)
Lời giải:
$x^2+y^2+z^2\geq \frac{(x+y+z)^2}{3}$
$\Leftrightarrow 3(x^2+y^2+z^2)\geq (x+y+z)^2$
$\Leftrightarrow 2(x^2+y^2+z^2)-2xy-2yz-2xz\geq 0$
$\Leftrightarrow (x^2+y^2-2xy)+(y^2+z^2-2yz)+(z^2+x^2-2xz)\geq 0$
$\Leftrightarrow (x-y)^2+(y-z)^2+(z-x)^2\geq 0$ (luôn đúng với mọi $x,y,z)$
Do đó ta có đpcm.
Dấu '=' xảy ra khi $x=y=z$
Cho 3 số thực dương thỏa mãn \(x+y\le z\).Chứng minh rằng:
\(\left(x^2+y^2+z^2\right)\left(\frac{1}{x^2}+\frac{1}{y^2}+\frac{1}{z^2}\right)\ge\frac{27}{2}\)
3 + (x²/y² + y²/x²) + (x²/z² + y²/z²) + (z²/x² + z²/y²)
x²/y² + y²/x² ≥ 2 (Theo AM - GM)
Nên A ≥ 5 + (x²/z² + y²/z²) + (z²/x² + z²/y²)
Sử dụng 2 BĐT quen thuộc sau:
a² + b² ≥ (1/2)*(a + b)²
1/a + 1/b ≥ 4/(a + b)
Đề thi vào lớp 10 môn Toán tỉnh Nghệ An năm 2014
https://thi.tuyensinh247.com/de-thi-vao-lop-10-mon-toan-tinh-nghe-an-nam-2014-c29a17566.html
Vào đó xem cho nó full :)))