Cho tứ giác ABCD,gọi m,N lần lượt là trung điểm của AD,BC.Biết AB=CD=2a và MN=a\(\sqrt{3}\)
a)CMR: AB không song song với CD
Cho tứ giác ABCD(AB không song song vs CD). Gọi M, N lần lượt là trung điểm của AB và CD biết MN = \(\frac{BC+AD}{2}\) .CMR: ABCD là hình thang.
Trả lời
Vì \(\hept{\begin{cases}AM=MB\\DC=NC\\MN=\frac{BC+AD}{2}\end{cases}}\Rightarrow MN\) là đường trung bình của hình thang
\(\Rightarrow ABCD\)là hình thang ( đpcm )
Thông cảm nha mọi người
tôi sẽ vẽ lại hình cho nha
Study well
Cho tứ giác ABCD (AB không song song với CD). Giả sử M, N lần lượt là đường trung bình của AB và CD, thỏa mãn: MN = BC + AD / 2 . Gọi I là trung điểm của BD. Chứng minh: ABCD là hình thang.
Cho tứ giác ABCD, AB không song song với CD; M, N lần lượt là trung điểm của BC, AD. Chứng minh \(MN=\dfrac{AB+CD}{2}\)
Đề sai rồi, phải là cm \(MN< \dfrac{AB+CD}{2}\)
Cho tứ giác ABCD có AB = CD nhưng không song song. Gọi M, N lần lượt là trung điểm của AC và BD. Chứng minh MN tạo với các cạnh AB và CD những góc nhọn bằng nhau.
Cho tứ giác ABCD có AB không song song với CD, BC < AD. Gọi E, F lần lượt là trung điểm của đường chéo AC và BD thỏa mãn EF= AD- BC \ 2
CMR : tứ giác ABCD là hình thang
Bạn ơi có đáp án câu này không mình xin với. Mình cũng đang học
Bài 2 :Cho hình chóp S.ABCD. Tứ giác ABCD là hình bình hành Gọi M, N, P lần lượt là trung điểm AB, CD và SA. a. CMR MN song song với các mp (SBC) và (SAD) b.Xác định giao tuyến của (SBD) với mp(MNP) c.CMR SC song song với (MNP) d.Gọi G,G, lần lượt là trọng tâm các tam giác ABC và tam giác anh CMR GG, // với (SAD)
a: Xét hình thang ABCD có
M,N lần lượt là trung điểm của AB,CD
nên MN là đường trung bình
=>MN//AD//BC
=>MN//(SAD) và MN//(SBC)
b: Gọi giao của MN với BD là O
=>O thuộc (SBD) giao (MNP)
MP//SB
=>\(\left(SBD\right)\cap\left(MNP\right)=xy\left(O\in xy\right);\)xy//MP//SB
Cho hình thang vuông ABCD (AB //CD, ) AB = 3cm, DC = 5cm. Gọi M và N lần lượt là trung điểm của AD và BC. Đường thẳng qua B song song với AD cắt DC tại E. a) Tính MN. b) Tứ giác ABED là hình gì? Vì sao? c) Gọi I là giao điểm của BE và MN. Chứng minh MI = 3.IN. d) Chứng minh tam giác ENC cân.
a) Xét hình thang ABCD(AB//CD) có
M là trung điểm của AD(gt)
N là trung điểm của BC(gt)
Do đó: MN là đường trung bình của hình thang ABCD(Định nghĩa đường trung bình của hình thang)
Suy ra: MN//AB//DC và \(MN=\dfrac{AB+CD}{2}\)(Định lí 4 về đường trung bình của hình thang)
hay \(MN=\dfrac{3+5}{2}=\dfrac{8}{2}=4\left(cm\right)\)
b) Ta có: AD//BE(gt)
AD\(\perp\)DC(gt)
Do đó: BE\(\perp\)DC(Định lí 2 từ vuông góc tới song song)
Xét tứ giác ABED có
\(\widehat{BAD}=90^0\)(gt)
\(\widehat{ADE}=90^0\)(gt)
\(\widehat{BED}=90^0\)(cmt)
Do đó: ABED là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
Cho tứ giác ABCD có AD và BC cắt nhau tại M. Gọi IJ lần lượt là trung điểm AB và CD. Gọi PQ lần lượt là giao điểm của BC,AD và IJ. Qua A,B vẽ đường thẳng song song với CD cắt IJ tại E,F. a) Chứng minh BP/PC=QA/QD b) Cho MA=4cm, MB=5cm, AD=8cm, BC=10cm. Chứng minh tam giác MAB đồng dạng với tam giác MDC CẢM ƠN!❤
cho tứ giác ABCD có AB không song song với CD. Gọi I và J lần lượt là trung điểm của AC và BD. CMR AC+BD+2IJ < AB+BC+CD+DA
sao hả bạn bạn biết thì trả lời giúp mình còn ko thì đừng hỏi vớ vẩn nhé