Cho x,y thỏa mãn x^2 + y^2 = 6( x - y - 3 ) Tính M = x^2019 + y^2019 + ( x + y )^2020
Cho x,y thỏa mãn x^2 + y^2 = 6( x - y - 3 ) Tính M = x^2019 + y^2019 + ( x + y )^2020
Cho các số x,y thuộc tập n thỏa mãn (x + y - 3)^ 2018 + 2018x (2x - 4)^2020 = 0
Tính giá trị của biểu thức S = (x -1)^2019 +( 2 - y)^2019 = 2018
Nhận xét : ( x + y - 3 )^2018 >=0 và 2018.(2x-4)^2020 >= 0
=> (x+y-3)^2018 + 2018.(2x-4)^2020 >=0
Dấu = xảy ra khi : x + y - 3 = 0 và 2x - 4 = 0 => x = 2 và y = 1
Thay vào bt S :
S = ( 2 - 1)^2019 + (2-1)^2019
= 1^2019 + 1^2019 = 2
Cho các số x,y thỏa mãn điều kiện:
\(x^2-2xy+6y^2-12x+2y+41=0\)
Tính giá trị của biểu thức: A=\(\dfrac{2020-2019\left(9-x-y\right)^{2019}-\left(x-6y\right)^{2010}}{y^{2010}}\)
Cho hàm số y=f(x) thỏa mãn f(x+y)=f(x).f(y) . Biết f(2019)=2020. tính f(2020)
Ta có:\(f\left(x\right).f\left(y\right)=f\left(x.y\right)\)
\(\Rightarrow f\left(x+y\right)=f\left(x.y\right)\)
\(\Rightarrow f\left(2019\right)=f\left(0+2019\right)=f\left(0.2019\right)=f\left(0\right)=2020\)
\(\Rightarrow f\left(2020\right)=f\left(0+2020\right)=f\left(0.2020\right)=f\left(0\right)\)
\(\Rightarrow f\left(2019\right)=f\left(2020\right)=f\left(0\right)=2020\)
khó quá.
Tại sao : \(f\left(0+2019\right)=f\left(0.2019\right)\)? logic, hay do mk ngu ... 2019 = 0 à ?
Cho 3 số x, y, z thỏa mãn x/2019=y/2020=z/2021. Chứng minh 4(x-y).(y-z)=(z-x)^2. Mọi người giúp mình với!
Đặt \(\dfrac{x}{2019}=\dfrac{y}{2020}=\dfrac{z}{2021}=k\)
\(\Rightarrow\left\{{}\begin{matrix}x=2019k\\y=2020k\\z=2021k\end{matrix}\right.\)
Ta có : \(4.\left(x-y\right).\left(y-z\right)=4.\left(2019k-2020k\right).\left(2020k-2021k\right)=4.\left(-k\right).\left(-k\right)=4k^2\)
Lại có : \(\left(z-x\right)^2=\left(2021k-2019k\right)^2=4k^2\)
Do đó : \(4.\left(x-y\right).\left(y-z\right)=\left(z-x\right)^2\)
Cho x,y thỏa mãn x+y= 2020/2019. Tìm GTNN F=2019/x = 1/2019y
cho 3 số x,y,z thỏa mãn x+y+z=1/x+1/y+1/z. tính q=(x^2018 - 1).[(-y)^2019 + 1].(z^2020 - 1)
Cho x, y thoả mãn:\(\sqrt{x+2019}+\sqrt{2020-x}-\sqrt{2019-x}=\sqrt{y+2019}+\sqrt{2020-y}-\sqrt{2019-y}\)
Cm :x=y
cho 3 số thực dương x,y,z thỏa mãn : x^2+y^3+z=1.Chứng minh rằng x^2018+y^2019+z^2020<1