\(x^2+y^2=6\left(x-y-3\right)\)\(\Rightarrow x^2+y^2-6\left(x-y-3\right)=0\)
\(\Leftrightarrow x^2+y^2-6x+6y+18=0\)\(\Leftrightarrow\left(x^2-6x+9\right)+\left(y^2+6x+9\right)=0\)
\(\Leftrightarrow\left(x-3\right)^2+\left(y+3\right)^2=0\)(1)
Vì \(\hept{\begin{cases}\left(x-3\right)^2\ge0\forall x\\\left(y+3\right)^2\ge0\forall y\end{cases}}\Rightarrow\left(x-3\right)^2+\left(y+3\right)^2\ge0\forall x,y\)(2)
Từ (1) và (2) \(\Rightarrow\left(x-3\right)^2+\left(y+3\right)^2=0\Leftrightarrow\hept{\begin{cases}x-3=0\\y+3=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=3\\y=-3\end{cases}}\)
\(\Rightarrow M=3^{2019}+\left(-3\right)^{2019}+\left(3-3\right)^{2020}=0\)
\(Ta \) \(có : \) \(x ^2 + y^2 = 6. ( x - y - 3 )\)
\(\Leftrightarrow\)\(x^2 + y^2 - 6. ( x - y - 3 ) = 0\)
\(\Leftrightarrow\)\(x^2 + y^2 - 6x + 6y + 18 = 0\)
\(\Leftrightarrow\)\(( x^2 - 6x + 9 ) + ( y^2 + 6y + 9 ) = 0\)
\(\Leftrightarrow\)\(( x - 3 )^2 + ( y + 3 )^2 = 0\)
\(\Leftrightarrow\)\(( x - 3 )^2 = 0 \) \(và \) \(( y - 3 )^2 = 0\)
\(\Leftrightarrow\)\(x - 3 = 0 \) \(và \) \(y + 3 = 0\)
\(\Leftrightarrow\)\(x = 3 \) \(và \) \(y = - 3\)
\(Thay\) \(x = 3 ; y = - 3 \) \(vào \) \(M \)\(ta \) \(được :\)
\(M = 3\)\(2019\) \(+ (- 3 )\)\(2019\) \(+ [ 3 + ( - 3 ) ]\)\(2020\)
\(M = 0 \)