tính tổng M=1.2+2.3+3.4+........+2012.2013
Tính (1.2+2.3+3.4+...2012.2013)-(2^2+3^2+...+2013^2)
Lời giải:
$(1.2+2.3+3.4+...+2012.2013)-(2^2+3^2+...+2013^2)$
$=[(2-1).2+(3-1).3+(4-1).4+...+(2013-1).2013]-(2^2+3^2+...+2013^2)$
$=(2^2+3^2+4^2+...+2013^2)-(2+3+4+...+2013)-(2^2+3^2+...+2013^2)$
$=-(2+3+4+...+2013)$
$=1-(1+2+3+...+2013)$
$=1-2013.2014:2=1-2027091=-2027090$
Tính nhanh:
(1.2+2.3+3.4+....+2012.2013)-(2.2+3.3+4.4+...+2013.2103)
Tín (1.2+2.3+3.4+4.5+.......+2012.2013)-(2.2+3.3+4.4+5.5+.......+2013.2013)
(1.2+2.3+3.4+.....+2012.2013)-(22+32+42+......+20132)
Tính nhanh
(1.2+2.3+3.4+.....+2012.2013)-(22+32+42+......+20132)
= 1.2 + 2.3 + 3.4 +...+ 2012.2013 - 22 -32 - 42 -....-20132
=1.2 + 2.3 + 3.4 + ...+2012.2013 - 2.2 -3.3 - 4.4 -...- 2013.2013
=(1.2 - 2.2) + (2.3 - 3.3) + (3.4 - 4.4) + ...+(2012.2013 - 2013.2013)
=2.(1-2) + 3.(2-3) + 4.(3-4) +...+2013.(2012-2013)
=2.(-1) + 3.(-1) + 4.(-1) + ...+2013.(2012-2013)
= -2 - 3 - 4 -...- 2013
= -(2+3+4+...+2013)
= -[(2013+2).2012:2]
=-2027090
tính tổng M=1.2+2.3+3.4+...+199.200
Ta có :
A = 1.2 + 2.3 + 3.4 + ... + 198.199 + 199.200
= 1.(1 + 1) + 2.(2 + 1) + 3.(3 + 1) + ... + 198(198 + 1) + 199(199 + 1)
= (1^2 + 1) + (2^2 + 2) + (3^2 + 3) + ... + (198^2 + 198) + (199^2 + 199)
= (1 + 2 + 3 + 4....+ 198 + 199) + (1^2 + 2^2 + 3^2 + ...+ 198^2 + 199^2)
* Dễ chứng minh :
....1 + 2 + 3 +...+ n = n(n + 1)/2
.... 1^2 + 2^2 +...+ n^2 = [n(n + 1)(2n + 1)]/6
Suy ra : A = [199.(199 + 1)]/2 + [199.(199 + 1)(2.199 + 1)]/6 = 2666600
tính tổng M=1.2+2.3+3.4+...+2002.2003
ta có công thức 1.2+2.3+3.4+...+n.(n+1)=\(\frac{n\left(n+1\right)\left(n+2\right)}{3}\)
áp dụng công thức vào bài ta có: 1.2+2.3+3.4+...+2002.2003 = \(\frac{2002.2003.2004}{3}=2678684008\)
( 1.2 + 2.3 + 3.4 + ....... + 2012.2013) - ( 22 + 32 + 42 + 52 ........ + 20132 )
(1.2 + 2.3 + 3.4 + ... + 2012.2013) - (22 + 32 + 42 + 52 + ... + 20132)
= [(2 - 1).2 + (3 - 1).3 + (4 - 1).4 + ... + (2013 - 1).2013] - (22 + 32 + 42 + 52 + ... + 20132)
= (22 - 2 + 32 - 3 + 42 - 4 + ... + 20132 - 2013) - (22 + 32 + 42 + 52 + ... + 20132)
= 22 - 2 + 32 - 3 + 42 - 4 + ... + 20132 - 2013 - 22 - 32 - 42 - 52 - ... - 20132
= (22 - 22) + (32 - 32) + (42 - 42) + ... + (20132 - 20132) - (2 + 3 + 4 + ... + 2013)
= 0 - (2 + 3 + 4 + ... + 2013)
= 0 - (1 + 2 + 3 + 4 + ... + 2013) + 1
= 0 - \(\dfrac{2013.\left(2013+1\right)}{2}\) + 1
= 0 - 2027091 + 1
= (-2027091) + 1
= -2027090
Tính tổng A=1.2+2.3+3.4+.......+2013.2014
A = 1.2 + 2.3 + 3.4 + ... + 2013.2014
3A = 1.2.3 + 2.3.3 + 3.4.3 + ... + 2013.2014.3
Mà :
1.2.3 = 1.2.3
2.3.3 = 2.3.4 - 2.3.1
3.4.3 = 3.4.5 - 3.4.2
2012.2013.3 = 2012.2013.2014 - 2012.2013.2011
2013.2014.3 = 2013.2014.2015 - 2013.2014.2012
Cộng tất cả, vế theo vế ---> 3S = 2013.2014.2015
---> A = 2013.2014.2015 / 3 = 2723058910.
của bạn đây
Tính tổng: S = 1.2 + 2.3 + 3.4 + 4.5 + ... + 99.100.
`S = 1.2 + 2.3 + 3.4 + 4.5 + ... + 99.100.`
`3S = 1.2.3 + 2.3.(4-1) + 3.4.(5-4) + 4.5.(6-3) + ... + 99.100.(101-98)`
`3S = 1.2.3 + 2.3.4-1.2.3 + 3.4.5-4.5.6 + 4.5.6-3.4.5 + ... + 99.100.101-98.99.100`
`3S = 99.100.101`
`S = 33.100.101`
`S = 333300`
3S=1.2(3-0)+2.3(4-1)+.....+99.100(101-98)
=1.2.3-0.1.2+2.3.4-1.2.3+4.5.6-2.3.4+....+99.100.101-98-99-100
=99.100.101
S=33.100.101
=333300