Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Minh
Xem chi tiết
nguyentruongan
Xem chi tiết
꧁༺Thảo Phương༻꧂
Xem chi tiết
Minh Tú sét boi
18 tháng 4 2022 lúc 22:02

Ta có: x2 – 2x + 1 = 6y2 -2x + 2

=> x2 – 1 = 6y2 => 6y2 = (x-1).(x+1) chia hết cho 2 , do   6y2 chia hết cho 2 

Mặt khác x-1 + x +1 = 2x chia hết cho 2 =>   (x-1) và (x+1) cùng  chẵn hoặc cùng lẻ.

Vậy (x-1) và (x+1) cùng  chẵn  => (x-1) và (x+1) là hai số chẵn liên tiếp

 (x-1).(x+1) chia hết cho 8 => 6y2 chia hết cho 8  =>  3y2 chia hết cho 4  => y2 chia hết cho 4  => y chia hết cho 2 

  y  =  2  ( y là số nguyên tố) , tìm được x = 5. 

Chúc học tốt!

Lú Toán, Mù Anh
Xem chi tiết
Nguyễn Việt Lâm
24 tháng 12 2021 lúc 21:23

\(\Leftrightarrow x^2-1=6y^2\)

Do \(6y^2\) chẵn và 1 lẻ \(\Rightarrow x^2\) lẻ \(\Rightarrow x\) lẻ \(\Rightarrow x=2k+1\)

\(\Rightarrow\left(2k+1\right)^2-1=6y^2\)

\(\Rightarrow4\left(k^2+k\right)=6y^2\)

\(\Rightarrow2\left(k^2+k\right)=3y^2\)

Do 2 chẵn  \(\Rightarrow3y^2\) chẵn \(\Rightarrow y^2\) chẵn \(\Rightarrow y\) chẵn

Mà y là SNT \(\Rightarrow y=2\)

Thay vào pt đầu: 

\(x^2+1=6.2^2+2\Rightarrow x=5\)

Vậy (x;y)=(5;2)

Phan Hà Phương
25 tháng 3 2022 lúc 15:30

Ta có: \(x^2-1=2y^2\)

Vì \(2y^2\) là số chẵn ⇒\(x^2\) là số lẻ ⇒ x là số lẻ

⇒ x= 2k+1

Ta có: \(\left(2k+1\right)^2-1=2y^2\)

⇒ \(4\left(k^2+k\right)=2y^2\)

\(2\left(k^2+k\right)=y^2\)

Vì 2 là số chẵn ⇒ \(y^2\) là số chẵn ⇒ y là số chẵn 

Mà y là số nguyên tố ⇒ y = 2

Ta lại có: \(x^2-1=2.2^2\)

⇒ \(x^2-1=8\)

\(x^2=8+1=9\)

⇒ x= -3 hoặc 3 

Vì x là số nguyên tố nên x =3

Vậy x=3, y=2

yurica
Xem chi tiết
Nguyễn Tạ Hoàng Hải
Xem chi tiết
Akai Haruma
10 tháng 12 2023 lúc 22:57

Lời giải:

Vì $p$ là số nguyên tố lớn hơn 3 nên $p$ không chia hết cho 3.

Mà $p$ lẻ nên $p=6k+1$ hoặc $6k+5$ với $k$ tự nhiên.

TH1: $p=6k+1$ thì:

$p^2-1=(6k+1)^2-1=6k(6k+2)=12k(3k+1)$

Nếu $k$ lẻ thì $3k+1$ chẵn.

$\Rightarrow p^2-1=12k(3k+1)\vdots (12.2)$ hay $p^2-1\vdots 24$

Nếu $k$ chẵn thì $12k\vdots 24\Rightarrow p^2-1=12k(3k+1)\vdots 24$

TH2: $p=6k+5$

$p^2-1=(6k+5)^2-1=(6k+4)(6k+6)=12(3k+2)(k+1)$
Nếu $k$ chẵn thì $3k+2$ chẵn

$\Rightarrow 12(3k+2)\vdots 24\Rightarrow p^2-1=12(3k+2)(k+1)\vdots 24$

Nếu $k$ lẻ thì $k+1$ chẵn

$\Rightarrow 12(k+1)\vdots 24\Rightarrow p^2-1=12(3k+2)(k+1)\vdots 24$
Vậy $p^2-1\vdots 24$

Ngô Hoàng Thanh Hải
Xem chi tiết
Ngô Hoàng Thanh Hải
Xem chi tiết
Nghan
Xem chi tiết
Smile Phạm
Xem chi tiết